

Mining Blocks' Association Rules for Disk Data

Perfecting

L.Y. Zhu, G.Q. Xiao*, J.W. Liao

College of Computer and Information Science

Southwest University Chongqing

China

*Corresponding author

Abstract—as the processor-I/O gap continues widening, the

modern I/O-bound applications such as Online Transaction

Processing (OLTP) often suffer from great latency of disk access.

In this paper, we argue that the block association rule can be
recognized as common semantic information embedded in disk

I/O traces and it can be utilized to direct disk prefetching. We

propose a novel mining approach to extract such association rules

to benefit prefetching. The experimental results show that this

proposed approach is effective in increasing prefetching accuracy,
and the disk latency can be reduced by this association rule based

prefetching.

Keywords-association rule; prefetching; storage system

I. INTRODUCTION

As the speed gap between processor and disk continues to

grow, the disk-based storage system is becoming the

bottleneck of data-intensive application system. We are now
allowed to apply much more delicate methods to the storage

system to attack the problem. Prefetching is a common
solution to mask the I/O latency. This approach hides the

latency with early I/O in itiation by utilizing the relatively
redundant computational resource, as well as efficient and

accurate prediction algorithm.

In general, there are main ly two fundamental perfecting
techniques [1] [2]: heuristic and speculative schemes. The later

approach 'pre-executes' fragments of code in the targeted
process via an extra helper thread [3] [4] [5]. The speculative

execution thread only keeps track of I/O related operations and
identifies future I/O references. This kind of approach

generally achieves high accuracy and can be more suitable for
applications whose access patterns are complex or random.

However, it usually involves source code transformation ,

prefetching inject ion and hardware support. On the other hand,
the heuristic scheme predicts future access based on patterns

obtained by analyzing past access history (or so-called trace)
[5] [6] [7]. Th is approach can be implemented without

hardware support, and has no need to touch the application.

In response to all these observations, we propose a novel

association rule mining approach used for heuristic prefetching

scheme. It is designed for improving the I/O performance for
complex workloads. Our mining approach solely targeting at

conducting prefetcher, outputs the association rules that can be
directly used to predict future data access. The min ing

approach is optimized in order to extract a s mall number of
necessary rules.

II. EXPLOITING BLOCK CORRELATIONS AS SEMANTICS

A. Block Correlations

The essential idea of b lock correlations is based on the fact
that the data processed and stored are somehow related with

each other by the semantics they contain. Two blocks can be

considered 'linked' if the data stored by these blocks is
correlated. However, data semantics can be much more

complex and rich, thus making the block correlations hard to
detect. Consider the correlation involves blocks that store

indexes and data the indexes point to in database systems. It is
both depended on high-level semantics of the data itself and

the data structures the application defines. Therefore it is

difficult to derive a general yet effective mathematical
description of these kinds of correlations.

Association rule [10] is a straightforward expression of
block correlation and can be directly used to predict future

block reference. These rules describe a phenomenon that
certain items occur with a high frequency after an occurrence

of other specific bunch of items. If we d iscover that block 5 is

always requested following block 1, 2 and 3, then we obtain
one association rule represented as {1,2,3}->{5}, where the

left hand {1,2,3} is called antecedent and right hand is called
consequent. We only need to mine one-item-consequent rules

here.

B. Time Constrains

In order to constrain the search space, time constrains are
applied to the association rules. It is obvious that those rules

are of less use even when they are indeed frequent and highly
confident, if whose antecedents have a long time span or there

is a huge time lag between the two antecedents and

consequents.

Formally, a time window w on a block sequences is

represent as w [Ts, Te], where Ts and Te are start time and end
time of window w,. Usually we constrain the width of the

searching window so that only closely occurring sequences are
searched. Besides, the consequent is required to occur in a

limit period of t ime right after antecedent stops, which means
if the antecedent stops at time t1, and the maximum time lag is

defined as tl, then the consequent should occur within the

window of [t1, t1+tl] .

International Conference on Computer Information Systems and Industrial Applications (CISIA 2015)

© 2015. The authors - Published by Atlantis Press 418

III. IMPLEMENTATION OF MINING AND PREDICTION

A. Preprocessing

There are three tasks for this stage. First, it is required that

block references are indexed in a single unified-space, which

means we can only access only one disk. However, many
common publicly availab le disk traces consist of an array of

multip le disks. Each block reference in these traces is indexed
by two variables, disk number and block number in that disk.

Thus, a transformation is needed to map the two dimensional
indexing space to the unified one dimensional space.

Second, there may be two or more blocks occurring at the

same timestamp in some t races . At this stage, the timestamp of
one of the blocks with identical t imestamp is added with a t iny

value to differ from another one.

Third, the orig inal long trace is cut up into smaller p ieces

in fixed length. And each small piece of trace is one by one
mined in the first mining stage.

B. Mining all One-Item-Antecedent Rules

The first mining procedure is to extract ing one-item

antecedent rules. The algorithm repeatedly s cans each piece,
records all qualified rules for each scan, and then merge the

rules with those recorded in the previous scans. The following

pseudo-code shows the algorithm.

Algorithm 1 one_item_mine(s, rsi)

Input: a piece of trace s, rule set rsi
Output: rule set rso
1 rule set tmp_rs ←{}
2 for each block reference b in s, generate time window w

[occur(b)+tl_min, occur(b)+tl+tl_max]
3 block set b1_set ←{}
4 for each block reference b1 in w and not in b1_set
5 b1_set ← b1_set + b1

6 Call update(tmp_rs, rule(b->b1))
7 end for
8 end for
9 filter out rules in tmp_rs whose support is lower than min_supp.

10 rso ← merge(tmp_rs, rsi), rsi ←rso.

The denotation occur(b) in line 2 represents the timestamp
of block b, and update in line 6 adds a new rule b->b1 to

tmp_rs if this ru le is not found in tmp_rs, or updates rule's
support and confidence if it is already in tmp_rs. Ideally, if we

run the algorithm using the whole trace as input, we will not

fail to count those rules that happen to span across two pieces.
Due to limited capacity of memory, we have to apply divide

and conquer approach. According to [7], the possibility of an
instance of a frequent rule span over the cutting point is small,

so the inherent loss is acceptable.

C. Expending Antecedent

Initially, the algorithm takes one rule extracted by last
stage as input, then recursively expands antecedent by one

item each t ime, and stops on some termination criteria. In fact ,
once one-item-antecedent rule set is obtained, prefetcher is

able to work using these rules. However, the expansion stage

is necessary. This is because of the observation that there are
many rules sharing the same antecedent. In response to this

issue, antecedent-expansion further mines the pattern, clears
out the ambiguity of shorter rules, and directs the prefetcher

making more confident and precise decisions. However,

expansion is not always necessary when rules are already
highly confident. So we skip the rules with confidence above

0.9.

The expending algorithm is as follows:

Algorithm 2 expand(r)

Input: rule r to be expanded
Output: rule set rs, return 1, if rule r or one of more of its descendants
saved. Return 0 otherwise.
1 rule set tmp_rs ←{}

2 for each instance i of r
3 ts, te refer to timestamp of antecedent 's start/stop, and tc is t imestamp

of consequent's item; searching window w[te-tw, min(ts+tw, tc)]
4 for each block b in w, such that b>max_bnr(r) and rule(b->cons(r)) is

included in rule set produced by last stage
5 Call update(tmp_rs, rule({ante(r),b}->cons(r))
6 end for
7 end for

8 flag ←0
9 for each candidate rule rc in tmp_rs such that supp(rc)>min_support
10 if conf(rc) > cutoff_conf

11 put rc into rs and flag ←1
12 else if conf(rc) > conf(r) and expand(rc) == 1
13 flag ←1
14 end if

15 end for
16 if flag==0
17 if conf(r) > min_conf
18 put r into rs and flag ← 1

19 end if
20 end if
21 return flag

Function update () does the same task as the one in
previous stage and conf(r) denotes the confidence of rule r.

The variable tw is pre-defined maximum searching t ime
windows described in section 2.3. This algorithm consists of

two parts. The first part collects all possible candidate blocks
in a limited search space. Notice line 9, It only picks up blocks

with greater numbers than those already included in rule r's

antecedent so that it is guaranteed that no duplicate blocks are
brought in. The second constrain is based on following lemma:

if ru le {a}->{b} is infrequent, none of the rules whose
antecedents consists of item a and share the same consequent

are frequent.

In the second part, the algorithm decides whether continue

the searching and whether save current rule r. Only the

candidates rules that have higher confidence than their
ascendant but not higher than cutoff_conf appears in line 10

should be worth further mining, so that all rules left in rule set
rs are at their highest confidence and searching space is pruned

as another benefit.

IV. EVALUATION

A. Methodology

To evaluate the performance of our approach, a trace-
driven simulator is implemented. It consists of a cache,

interfaces of replacement policy, prefetcher and DiskSim.
When the simulator read ing the disk trace, it maintains the

cache and provokes replacement policy and prefetcher. The

actual disk access generated by the simulator is fo rwarded to
DiskSim [11], which simulates accesses being handled by real

disk system.

419

We select the following traces for our experiments:

1) TPC-C t race is collected on a storage system backing a

Microsoft SQL Server. The trace is generated during the
clients running TPC-C benchmark for 2 hours. 2) OLTP trace

is offered by Storage Performance Council. The trace samples

1.5 hours of I/O activity of an OLTP application running at a
financial institution. The storage system is composed of 19

disks. 3) Kernel trace is collected by the authors during
compiling Linux kernel. The compiling computer runs a

modified Linu x kernel, which intercepts VFS's routines and
records every disk block references. The total time is about 48

minutes.

We only use the first half part of trace to mine association
rules. And evaluate the performance of prefetcher d irected by

the rules using the second part. We also implement sequential
prefetching algorithm based on the same idea adapted by

readahead [8] in Linux kernel. All experiments use Least
Recent Used (LRU) cache replacement policy.

B. Constrains' Impact on Performance

Figure 5-1 and 5-2 show the effects of hit ratio by two

constrains, minimum confidence min_conf and maximum t ime
searching window tw. To evaluate the performance of our

approach, we measure the response time produced by the

simulators without prefetching and with sequential prefetching,
and figure 5-3 compares the results.

When min_conf decreases, more association rules satisfy
the criteria. We can see the ratio increases slowly when

confidence is small and finally stop rising at some point. This
is because when the criterion is low, too many low quality

rules are kept. And as it goes higher than certain points,

although the prefetched blocks are highly possible being hit,
the chance of triggering prefetching becomes rare and

stabilized.

Constrain tw denotes the maximum time window allowed,

which limits the searching space and the number of items of
antecedents. As figure 1 and 2 show, although all traces share

the same tendency that wider the windows lead to higher the
hit ratio, the hit ratios themselves respond to tw differently.

There are steep rise and stabilizing two stages for TPC-C and

OLTP hit ratio, while in kernel trace it increases steadily. W ith
this prior knowledge of the targeted workload, we can tune the

mining algorithm faster.

FIGURE I. HIT RATIO AGAINST CONF.

FIGURE II. HIT RATIO AGAINST SEARCHING WINDOW.

Figure 3 shows response times produced by the three traces.
In each bar group, the left bar is simulated with none

prefetcher, middle bar is with sequential prefetcher, and right
one is with our association rule guided prefetcher.

Our prefetcher can effectively decrease the response time

over these three traces, especially on TPC-C and OLTP,
considering the measurements decrease by 8%-10%

comparing with the experiments with none prefetching. We
observe that when simulating using sequential policy on TPC-

C trace, the response time even goes higher than the one with
none prefetcher. Although its performance can be promoted by

tuning the policy, the response time cannot decrease as much
as our approach achieves.

FIGURE III. RESPONSE TIME BY THREE CONFIGURATIONS, IN

EACH GROUP, LEFT BAR IS SIMULATION WITH NONE
PREFETCHER, MIDDLE BAR IS WITH SEQUENTIAL PREFETCHER

AND RIGHT ONE IS WITH OUR ASSOCIATION RULE GUIDED
PREFETCHER.

V. CONCLUSION

In this paper, we have proposed an association rule mining

approach designed for the prediction purpose for storage
systems. We have discussed the idea of using the correlation

informat ion of I/O access events in the block-level to direct
the prefetcher operating for complex workloads. Therefore, an

algorithm for ext racting association rule is proposed to
contribute to prefetching. The evaluation experiments on real

workloads have shown that our approach can efficiently

discover a set of accurate prediction ru les at an acceptable cost,
as a consequence, the performance of the storage system can

be promoted by the association rule based prefetching.

ACKNOWLEDGEMENT

In this paper, the research was sponsored by National Key
Technologies Research and Development Program of China

(Pro ject No. 2013BAD15B06).

420

REFERENCE

[1] Zhen, Yong, et al. "Hiding I/O latency with pre-execution prefetching
for parallel applications." High Performance Computing, Networking,
Storage and Analysis, 2008. SC 2008. International Conference for.
IEEE, 2008.

[2] Chang, Fay W. Using speculative execution to automatically hide I/O
latency. No. CMU-CS-01-172. CARNEGIE-MELLON UNIV
PITTSBURGH PA SCHOOL OF COMPUTER SCIENCE, 2001.

[3] Liao, Jianwei, et al. "Dynamic Stripe Management Mechanism in
Distributed File Systems." Network and Parallel Computing. Springer
Berlin Heidelberg, 2014. 497-509.

[4] Yang, Chuan-Kai, Tulika Mitra, and Tzi-cker Chiueh. "A Decoupled
Architecture for Application-Specific File Prefetching." USENIX
Annual Technical Conference, FREENIX Track. 2002.

[5] Byna, Surendra, et al. "Parallel I/O prefetching using MPI file caching
and I/O signatures." High Performance Computing, Networking, Storage
and Analysis, 2008. SC 2008. International Conference for. IEEE, 2008.

[6] Jiang, Song, et al. "A Prefetching Scheme Exploiting both Data Layout
and Access History on Disk." ACM Transactions on Storage (TOS) 9.3
(2013): 10.

[7] Li, Zhenmin, et al. "C-Miner: Mining Block Correlations in Storage
Systems."FAST. 2004.

[8] Fengguang, W. U., X. I. Hongsheng, and X. U. Chenfeng. "On the
design of a new Linux readahead framework." ACM SIGOPS Operating
Systems Review42.5 (2008): 75-84.

[9] Yan, Xifeng, Jiawei Han, and Ramin Afshar. "CloSpan: Mining closed
sequential patterns in large datasets." Proceedings of SIAM International
Conference on Data Mining. 2003.

[10] Kotsiantis, Sotiris, and Dimitris Kanellopoulos. "Association rules
mining: A recent overview." GESTS International Transactions on
Computer Science and Engineering 32.1 (2006): 71-82.

[11] Ganger, Greg, B. Worthington, and Y. Patt. "The DiskSim simulation
environment (v4. 0)." (2009).

421

