
 

 

Mining Blocks' Association Rules for Disk Data 

Perfecting 

L.Y. Zhu, G.Q. Xiao*, J.W. Liao 

College of Computer and Information Science 

Southwest University Chongqing 

China 

*Corresponding author 

 

Abstract—as the processor-I/O gap continues widening, the 

modern I/O-bound applications such as Online Transaction 

Processing (OLTP) often suffer from great latency of disk access. 

In this paper, we argue that the block association rule can be 
recognized as common semantic information embedded in disk 

I/O traces and it can be utilized to direct disk prefetching. We 

propose a novel mining approach to extract such association rules 

to benefit prefetching. The experimental results show that this 

proposed approach is effective in increasing prefetching accuracy, 
and the disk latency can be reduced by this association rule based 

prefetching. 
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I. INTRODUCTION 

As the speed gap between processor and disk continues to 

grow, the disk-based storage system is becoming the 

bottleneck of data-intensive application system. We are now 
allowed to apply much more delicate methods to the storage 

system to attack the problem. Prefetching is a common 
solution to mask the I/O latency. This approach hides the 

latency with early I/O in itiation by utilizing the relatively  
redundant computational resource, as well as efficient and 

accurate prediction algorithm. 

In general, there are main ly two fundamental perfecting  
techniques [1] [2]: heuristic and speculative schemes. The later 

approach 'pre-executes' fragments of code in the targeted 
process via an extra helper thread [3] [4] [5]. The speculative 

execution thread only keeps track of I/O related operations and 
identifies future I/O references. This kind of approach 

generally achieves high accuracy and can be more suitable for 
applications whose access patterns are complex or random. 

However, it usually involves source code transformation , 

prefetching inject ion and hardware support. On the other hand, 
the heuristic scheme predicts future access based on patterns 

obtained by analyzing past access history (or so-called trace) 
[5] [6] [7]. Th is approach can be implemented without 

hardware support, and has no need to touch the application. 

In response to all these observations, we propose a novel 

association rule mining approach used for heuristic prefetching 

scheme. It  is designed for improving the I/O performance for 
complex workloads. Our mining approach solely targeting at 

conducting prefetcher, outputs the association rules that can be 
directly used to predict future data access. The min ing 

approach is optimized in order to extract a s mall number of 
necessary rules. 

II. EXPLOITING BLOCK CORRELATIONS AS SEMANTICS 

A. Block Correlations 

The essential idea of b lock correlations is based on the fact 
that the data processed and stored are somehow related with 

each other by the semantics they contain. Two blocks can be 

considered 'linked' if the data stored by these blocks is 
correlated. However, data semantics can be much more 

complex and rich, thus making the block correlations hard to 
detect. Consider the correlation involves blocks that store 

indexes and data the indexes point to in database systems. It is 
both depended on high-level semantics of the data itself and 

the data structures the application defines. Therefore it is 

difficult to derive a general yet effective mathematical 
description of these kinds of correlations. 

Association rule [10] is a straightforward expression of 
block correlation and can be directly used to predict future 

block reference. These rules describe a phenomenon that 
certain items occur with a high frequency after an occurrence 

of other specific bunch of items. If we d iscover that block 5 is 

always requested following block 1, 2 and 3, then we obtain 
one association rule represented as {1,2,3}->{5}, where the 

left hand {1,2,3} is called antecedent and right hand is called  
consequent. We only need to mine one-item-consequent rules 

here.  

B. Time Constrains 

In order to constrain the search space, time constrains are 
applied to the association rules. It is obvious that those rules 

are of less use even when they are indeed frequent and highly 
confident, if whose antecedents have a long time span or there 

is a huge time lag between the two antecedents and 

consequents. 

Formally, a time window w on a block sequences is 

represent as w [Ts, Te], where Ts and Te are start time and end 
time of window w,. Usually we constrain the width of the 

searching window so that only closely occurring sequences are 
searched. Besides, the consequent is required to occur in a 

limit  period of t ime right after antecedent stops, which means 
if the antecedent stops at time t1, and the maximum time lag is 

defined as tl, then the consequent should occur within  the 

window of [t1, t1+tl] . 
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III. IMPLEMENTATION OF MINING AND PREDICTION 

A. Preprocessing 

There are three tasks for this stage. First, it is required that 

block references are indexed in a single unified-space, which  

means we can only  access only one disk. However, many 
common publicly availab le disk traces consist of an array of 

multip le disks. Each block reference in these traces is indexed 
by two variables, disk number and block number in that disk. 

Thus, a transformation is needed to map the two  dimensional 
indexing space to the unified one dimensional space. 

Second, there may be two or more blocks occurring at the 

same timestamp in some t races . At this stage, the timestamp of 
one of the blocks with identical t imestamp is added with a t iny 

value to differ from another one. 

Third, the orig inal long trace is  cut up into smaller p ieces 

in fixed length. And each small piece of trace is one by one 
mined in the first mining stage. 

B. Mining all One-Item-Antecedent Rules 

The first mining procedure is to extract ing one-item 

antecedent rules. The algorithm repeatedly s cans each piece, 
records all qualified rules for each scan, and then merge the 

rules with those recorded in the previous scans. The following 

pseudo-code shows the algorithm. 

Algorithm 1 one_item_mine(s, rsi) 

Input: a piece of trace s, rule set  rsi  
Output: rule set rso 
1 rule set tmp_rs ←{} 
2 for each block reference b in s, generate time window w 

[occur(b)+tl_min, occur(b)+tl+tl_max] 
3 block set b1_set ←{} 
4 for each  block reference b1 in w and not in b1_set 
5 b1_set  ← b1_set + b1 

6  Call update(tmp_rs, rule(b->b1))  
7 end for 
8 end for  
9 filter out rules in tmp_rs whose support is lower than min_supp. 

10 rso ← merge(tmp_rs, rsi),  rsi ←rso. 

The denotation occur(b) in line 2 represents the timestamp 
of block b, and update in line 6 adds a new rule b->b1 to 

tmp_rs if this ru le is not found in  tmp_rs, or updates rule's 
support and confidence if it  is already in tmp_rs. Ideally, if we 

run the algorithm using the whole trace as input, we will not 

fail to count those rules that happen to span across two pieces. 
Due to limited capacity of memory, we have to apply divide 

and conquer approach. According to [7], the possibility of an  
instance of a frequent rule span over the cutting point is small, 

so the inherent loss is acceptable. 

C. Expending Antecedent  

Initially, the algorithm takes one rule extracted by last 
stage as input, then recursively expands antecedent by one 

item each t ime, and stops on some termination criteria. In  fact , 
once one-item-antecedent rule set is obtained, prefetcher is 

able to work using these rules. However, the expansion stage 

is necessary. This is because of the observation that there are 
many rules sharing the same antecedent. In response to this 

issue, antecedent-expansion further mines the pattern, clears 
out the ambiguity of shorter rules, and directs the prefetcher 

making more confident and precise decisions. However, 

expansion is not always necessary when rules are already 
highly confident. So  we skip the rules with confidence above 

0.9. 

The expending algorithm is as follows: 

Algorithm 2 expand(r)  

Input: rule r to be expanded  
Output: rule set rs, return 1, if rule r or one of more of its descendants 
saved. Return 0 otherwise. 
1  rule set tmp_rs ←{} 

2  for each instance i of r 
3     ts, te refer to timestamp of antecedent 's start/stop, and tc is t imestamp 

of consequent's item; searching window w[te-tw, min(ts+tw, tc)] 
4   for each block b in w, such that b>max_bnr(r) and rule(b->cons(r)) is 

included in rule set produced by last stage 
5         Call update(tmp_rs, rule( {ante(r),b}->cons(r)) 
6     end for 
7  end for 

8   flag ←0 
9 for each  candidate rule rc in tmp_rs such that supp(rc)>min_support 
10        if conf(rc) > cutoff_conf 

11             put rc into rs  and   flag ←1 
12       else  if conf(rc) > conf(r) and expand(rc) == 1 
13         flag ←1 
14       end if 

15  end for 
16  if  flag==0 
17      if conf(r) > min_conf 
18          put  r  into rs   and  flag ← 1 

19    end if 
20  end if 
21  return  flag 

Function update () does the same task as the one in 
previous stage and conf(r) denotes the confidence of rule r. 

The variable tw is pre-defined maximum searching t ime 
windows described in section 2.3. This algorithm consists of 

two parts. The first part collects all possible candidate blocks 
in a limited search space. Notice line 9, It only  picks up blocks 

with greater numbers than those already included in rule r's 

antecedent so that it is guaranteed that no duplicate blocks are 
brought in. The second constrain is based on following lemma: 

if ru le {a}->{b} is infrequent, none of the rules whose 
antecedents consists of item a and share the same consequent 

are frequent. 

In the second part, the algorithm decides whether continue 

the searching and whether save current rule r. Only the 

candidates rules that have higher confidence than their 
ascendant but not higher than cutoff_conf appears in line 10 

should be worth  further mining, so that all rules left in  rule set 
rs are at their highest confidence and searching space is pruned 

as another benefit. 

IV. EVALUATION 

A. Methodology 

To evaluate the performance of our approach, a trace-
driven simulator is implemented. It consists of a cache, 

interfaces of replacement policy, prefetcher and DiskSim. 
When the simulator read ing the disk trace, it maintains the 

cache and provokes replacement policy and prefetcher. The 

actual disk access generated by the simulator is fo rwarded to 
DiskSim [11], which simulates accesses being handled by real 

disk system. 
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We select the following traces for our experiments: 

1) TPC-C t race is collected on a storage system backing a 

Microsoft SQL Server. The trace is generated during  the 
clients running TPC-C benchmark for 2 hours. 2) OLTP trace 

is offered by Storage Performance Council. The trace samples 

1.5 hours of I/O activity of an OLTP application running at a 
financial institution. The storage system is composed of 19 

disks. 3)  Kernel trace is collected by the authors during 
compiling Linux kernel. The compiling computer runs a 

modified Linu x kernel, which intercepts VFS's routines and 
records every disk block references. The total time is about 48 

minutes. 

We only use the first half part of trace to mine association 
rules. And evaluate the performance of prefetcher d irected by 

the rules using the second part. We also implement sequential 
prefetching algorithm based on the same idea adapted by 

readahead [8] in Linux kernel. All experiments use Least 
Recent Used (LRU) cache replacement policy.  

B. Constrains' Impact on Performance 

Figure 5-1 and 5-2 show the effects of hit ratio by two 

constrains, minimum confidence min_conf and maximum t ime 
searching window tw. To  evaluate the performance of our 

approach, we measure the response time produced by the 

simulators without prefetching and with sequential prefetching, 
and figure 5-3 compares the results. 

When min_conf decreases, more association rules satisfy 
the criteria. We can see the ratio increases slowly when 

confidence is small and finally stop rising at some point. This 
is because when the criterion is low, too many low quality 

rules are kept. And as it goes higher than certain points, 

although the prefetched blocks are highly possible being hit, 
the chance of triggering prefetching becomes rare and 

stabilized. 

Constrain tw denotes the maximum time window allowed, 

which limits the searching space and the number of items of 
antecedents. As figure 1 and 2 show, although all traces share 

the same tendency that wider the windows lead  to higher the 
hit ratio, the hit  ratios themselves respond to tw differently. 

There are steep rise and stabilizing two stages for TPC-C and 

OLTP hit ratio, while in  kernel trace it  increases steadily. W ith 
this prior knowledge of the targeted workload, we can tune the 

mining algorithm faster. 

 
FIGURE I. HIT  RATIO AGAINST CONF. 

 

FIGURE II. HIT RATIO AGAINST SEARCHING WINDOW. 

Figure 3 shows response times produced by the three traces. 
In each bar group, the left bar is simulated with none 

prefetcher, middle bar is with sequential prefetcher, and right 
one is with our association rule guided prefetcher. 

Our prefetcher can effectively decrease the response time 

over these three traces, especially on TPC-C and OLTP, 
considering the measurements decrease by 8%-10% 

comparing with the experiments with none prefetching. We 
observe that when simulating using sequential policy on TPC-

C trace, the response time even goes higher than the one with 
none prefetcher. Although its performance can be promoted by 

tuning the policy, the response time cannot decrease as much 
as our approach achieves. 

 
FIGURE III. RESPONSE TIME BY THREE CONFIGURATIONS, IN 

EACH GROUP, LEFT BAR IS SIMULATION WITH NONE 
PREFETCHER, MIDDLE BAR IS WITH SEQUENTIAL PREFETCHER 

AND RIGHT ONE IS WITH OUR ASSOCIATION RULE GUIDED 
PREFETCHER. 

V. CONCLUSION 

In this paper, we have proposed an association rule mining  

approach designed for the prediction purpose for storage 
systems. We have discussed the idea of using the correlation 

informat ion of I/O access events in the block-level to direct  
the prefetcher operating for complex workloads. Therefore, an 

algorithm for ext racting association rule is proposed to 
contribute to prefetching. The evaluation experiments on real 

workloads have shown that our approach can efficiently  

discover a set of accurate prediction ru les at an acceptable cost, 
as a consequence, the performance of the storage system can  

be promoted by the association rule based prefetching. 
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