Research on Dynamic Pricing and Ordering Policy of Fresh Agriculture Product Considering Consumers’ Perceived Quality

K. Nie, D.F. Xie, W. Li
School of Economy and Trade Hunan University
Changsha 410079, Hunan, China
Key Laboratory of Logistics Information and Simulation Technology
Hunan University
Changsha 410079, China

Abstract

In this article, we first formulated the demand function of price and quality. Then we analyzed the order quantity and the pricing decision under the single price markdown condition and the multiple price markdown condition respectively. We find that under the single price markdown condition and the multiple price markdown condition, the fresh agricultural products with different consumers' perceived quality elasticity should make the different optimal ordering quantity and optimal pricing decision.

Keywords-fresh agriculture product; consumers’ perceived quality; price discount; ordering quantity

I INTRODUCTION

Many scholars researched on fresh product pricing and ordering policy. Karen etc. [1] pointed out that the price is an important strategy for the supermarket. Van Ryzin[2] established a fresh product pricing model based on the demand of the production as random variables. When approaching the shelf life of products, businesses often take discounts to promote the products [3-5]. Cai[6] introduced the ideas and the techniques of the supply chain management to the field of the fresh agricultural produces management. Wang and Li [7] established a consumer utility model which taking into account the price and the freshness of fresh produces with time-varying. This paper focused on the impact of the consumers perceives quality to the fresh agriculture product's optimal ordering quantity and optimal pricing decision.

II MODEL DESCRIPTION

Model assumes:(1) the products' demand was affected by the price named as p and the consumer perceived quality; (2) the fresh degree is related to its shelf time named ${ }^{t}$, that is $p=p(t)$;(3)assuming the q is function of p and t, that is $q=q(p, t)$.

Demand function: $D_{t}=\varepsilon\left[y_{0}-\alpha p(t)+\beta q_{0} \phi(p(t)) e^{-\lambda t}\right]$
y_{0} represents potential market demand; $\mathcal{E}_{\text {represents the }}$ degree of demand to realize; $f(x)$ and $F(x)$ is the probability density function and distribution function, and $\mathrm{E}(\varepsilon)=1$; q_{0} represents the initial quality of the product,
$\phi(p(t)) \in(0,1)$, and assume that $\phi(p(t))={ }^{P(t)} / P ; \lambda$:the attenuation degree; β :the perceived quality of products; α :the price elasticity of the products; T :the sales period of fresh products; ${ }^{c_{p}}$:the unit changing cost; ${ }^{W}$:unit wholesale price; r:save rate; ${ }^{C_{t}}$:transportation cost per unit h :product inventory cost per unit; Q :the quality of the products’; ${ }^{I(t)}$:the products’ inventory levels at time $t ;{ }^{T}$: the adjustment time of the price ; θ : Price discount.

IIIMODEL ANALYSIS

A. One-Time Price Adjustment Analysis

In order to promote the sales of the goods, sellers often adopt the discounts to attract more customers.

Then $p(t)=p, 0<t<t_{1} ; p(t)=\theta p, t_{1}<t<T$

$$
\frac{d I_{0}(t)}{d t}=-D_{0} \quad D_{0}=\varepsilon\left[y_{0}-\alpha p+\beta q_{0} e^{-\lambda t}\right]
$$

The Inventory model: $\frac{d I_{0}(t)}{d t}=-D_{0}, \quad D_{0}=\varepsilon\left[y_{0}-\alpha p+\beta q_{0} e^{-\lambda t}\right]$, From the initial inventory $I(0)=\gamma Q$, we know that

$$
\begin{gather*}
I_{0}(t)=\gamma Q-\varepsilon\left(y_{0}-\alpha p\right) t-\varepsilon \beta q_{0}\left(1-e^{-\lambda t}\right) / \lambda \tag{1}\\
\frac{d I_{1}(t)}{d t}=-D_{1}
\end{gather*}
$$

$$
D_{1}=\varepsilon\left(y_{0}-\alpha \theta p+\beta q_{0} \theta e^{-\lambda t}\right)
$$

From $I(\mathrm{t})=0$, we know that
$I_{1}(t)=\varepsilon\left[\left(y_{0}-\alpha \theta p\right)(T-t)-\beta q_{0} \theta\left(e^{-\lambda T}-e^{-\lambda t}\right) / \lambda\right], t_{1}<t<T$
The optimal order quantity
$Q^{*}=\beta q_{0} \varepsilon\left[\left(1-e^{-\lambda t_{i}}\right)+\theta\left(e^{-\lambda \lambda_{1}}-e^{-\lambda \tau}\right)\right] / \lambda \gamma+\varepsilon \frac{y_{0} T-\alpha \theta p\left(T-t_{1}\right)}{\gamma}-\varepsilon \frac{\alpha p t_{1}}{\gamma}$
During the sales period T ,

The retailer's profit:
$\pi_{r 1}=p(t) \int_{0}^{T} D(t) d t-\left(w+c_{t}\right) Q-c_{p}\left(\gamma Q-\int_{0}^{t_{1}} D_{0} d t\right)-h \int_{0}^{t_{1}} I_{0}(t) d t-h \int_{t_{1}}^{T} I_{1}(t) d t$

$$
\begin{align*}
& \partial \pi_{r 1} / \partial \theta=p \varepsilon y_{0}\left(T-t_{1}\right)+\varepsilon h\left[\frac{\alpha p\left(T-t_{1}\right)^{2}}{2}+\frac{1}{\lambda} \beta q_{0} e^{-\lambda T}\left(T-t_{1}\right)-\frac{\beta q_{0}\left(e^{-\lambda t_{1}}-e^{-\lambda T}\right)}{\lambda^{2}}\right] \\
& -\varepsilon\left(h \gamma t_{1}+c_{p} \gamma+w+c_{t}\right)\left[\frac{\beta q_{0}\left(e^{-\lambda t_{1}}-e^{-\lambda T}\right)}{\lambda \gamma}-\frac{\alpha p}{\gamma}\left(T-t_{1}\right)\right]-2 \alpha \varepsilon \theta p^{2}\left(T-t_{1}\right)+2 \varepsilon p \beta q_{0} \theta^{\left(e^{-\lambda \lambda_{1}}-e^{-\lambda T}\right) / \lambda} \tag{6}\\
& \quad \partial \pi_{r 1}^{2} / \partial \theta^{2}=-2 \alpha \varepsilon p^{2}\left(T-t_{1}\right)+2 p \beta q_{0} \frac{\left(e^{-\lambda t_{1}}-e^{-\lambda T}\right)}{\lambda}<0 \tag{7}
\end{align*}
$$

The optimal price discount

$$
\begin{align*}
\theta^{*}= & \frac{2 \lambda^{2} p y_{0}\left(T-t_{1}\right)+h\left[\lambda^{2} \alpha p\left(T-t_{1}\right)^{2}+2 \lambda \beta q_{0} e^{-\lambda T}\left(T-t_{1}\right)-2 \beta q_{0}\left(e^{-\lambda t_{1}}-e^{-\lambda T}\right)\right]}{4 \lambda^{2} \alpha p^{2}\left(T-t_{1}\right)-4 \lambda p \beta q_{0}\left(e^{-\lambda t_{1}}-e^{-\lambda T}\right)} \\
& -\frac{\left(h \gamma t_{1}+c_{p} \gamma+w+c_{t}\right)\left[\beta q_{0}\left(e^{-\lambda t_{1}}-e^{-\lambda T}\right)-\lambda \alpha p\left(T-t_{1}\right)\right]}{2 \alpha \lambda \gamma p^{2}\left(T-t_{1}\right)-2 p \beta q_{0} \gamma\left(e^{-\lambda t_{1}}-e^{-\lambda T}\right)} \tag{8}
\end{align*}
$$

B. Several-Times Price Adjustment Analysis

Assuming the products had a greater damage during the transportation. Retailers' re-pricing remaining products.

The inventory model

$$
\begin{equation*}
\frac{d I(t)}{d t}=-D(t)=-\varepsilon\left(y_{0}-\alpha p_{1}+\beta q_{1} e^{-\lambda t}\right) \tag{9}
\end{equation*}
$$

$$
\begin{align*}
I(t) & =\gamma Q_{1}-\varepsilon\left(y_{0}-\alpha p_{1}\right) t-\varepsilon \beta q_{1}\left(1-e^{-\lambda t}\right) / \lambda \tag{10}\\
Q_{1}^{*} & =\frac{\varepsilon}{\gamma}\left[\left(y_{0} \varepsilon-\alpha p_{1}\right) T+\beta q_{1}\left(1-e^{-\lambda T}\right) / \lambda\right] \tag{11}
\end{align*}
$$

The demand of the fresh products during T is:

$$
\begin{equation*}
E D=\int_{0}^{T} \varepsilon\left(y_{0}-\alpha p_{1}+\beta q_{1} e^{-\lambda t}\right) d t=\varepsilon\left(y_{0} \varepsilon-\alpha p_{1}\right) T+\varepsilon \beta q_{1}^{\left(1-e^{-\lambda T}\right) / \lambda} \tag{12}
\end{equation*}
$$

The retailer's profit is:

$$
\begin{align*}
\pi_{r 2} & =p_{1} E D-\left(w+c_{t}\right) Q_{1}-c_{p} \gamma Q_{1}-h \int_{0}^{T} I(t) d t \\
& =\varepsilon\left(p_{1}-c_{p}-h T-\frac{w+c_{t}}{\gamma}\right)\left[\left(y_{0}-\alpha p_{1}\right) T+\beta q_{1} 1-e^{-\lambda T} / \lambda^{+}+h \varepsilon\left[\frac{1}{2}\left(y_{0}-\alpha p_{1}\right) T^{2}+\frac{\beta q_{1} T}{\lambda}-\frac{\beta q_{1}\left(1-e^{-\lambda T}\right)}{\lambda^{2}}\right]\right. \tag{13}
\end{align*}
$$

$\frac{\partial \pi_{r 2}}{\partial p_{1}}=y_{0} \varepsilon T+\frac{\varepsilon \alpha T\left(\gamma c_{p}+w+c_{t}\right)}{\gamma}+\frac{\varepsilon \alpha h T^{2}}{2}+\varepsilon \beta q_{1} \frac{1-e^{-\lambda T}}{\lambda}-2 \varepsilon \alpha T p_{1} \frac{\partial \pi_{r 2}{ }^{2}}{\partial p_{1}{ }^{2}}=-2 \alpha \varepsilon T<0$
$p_{1}^{*}=\frac{2 \gamma y_{0}+2 \alpha\left(\gamma c_{p}+w+c_{t}\right)+\alpha \gamma h T}{4 \alpha \gamma}+\frac{\beta q_{1}\left(1-e^{-\lambda T}\right)}{2 \alpha \lambda T}$
If it has several price adjustment, the demand function is:

$$
\begin{equation*}
D_{i}=\varepsilon\left(y_{0}-\alpha p_{i}+\beta q_{0} \frac{p_{i}}{p_{0}} e^{-\lambda_{i} t}\right)\left(t_{i}<t<t_{i+1}\right) \tag{15}
\end{equation*}
$$

In order to simplify the calculations, we assume that the time factor of the quality λ_{i} is the same with λ, and assume $t_{0}=0$,before the n-th price adjustment we know that $\frac{d I_{n-1}(t)}{d t}=-D_{n-1}$, at the same time $I_{0}(0)=\gamma Q_{1}, I_{0}\left(t_{1}\right)=I_{1}\left(t_{1}\right), \ldots \quad I_{i-1}\left(t_{i}\right)=I_{i}\left(t_{i}\right)$, so we can obtained that :

$$
\begin{align*}
& I_{0}(t)=\gamma Q_{1}-\beta q_{0} \varepsilon / \lambda-\varepsilon\left[\left(y_{0}-\alpha p_{0}\right) t-\beta q_{0} e^{-\lambda t} / \lambda\right] 0<t<t_{1}(16) \\
& I_{1}(t)=\gamma Q_{1}-\varepsilon\left(y_{0}-\alpha p_{0}\right) t_{1}-\varepsilon\left(y_{0}-\alpha p_{1}\right)\left(t-t_{1}\right)-\frac{\varepsilon \beta q_{0}}{\lambda}\left(1-\frac{p_{0}-p_{1}}{p_{0}} e^{-\lambda t_{1}}-\frac{p_{1}}{p_{0}} e^{-\lambda t}\right) / \lambda t_{1}<t<t_{2} \\
& I_{i}(t)=\gamma Q_{1}-\varepsilon\left(y_{0}-\alpha p_{i}\right)\left(t-t_{i}\right)-\varepsilon \sum_{k=0}^{i-1}\left(y_{0}-\alpha p_{k}\right)\left(t_{k+1}-t_{k}\right)-\frac{\varepsilon \beta q_{0}}{\lambda}\left(1-\frac{p_{i}}{p_{0}} e^{-\lambda t}\right) / \lambda \\
& +\frac{\varepsilon \beta q_{0}}{\lambda p_{0}} \sum_{k=0}^{i-1}\left(p_{k}-p_{k+1}\right) e^{-\lambda t_{k+1}} t_{i} \leq t \leq t_{i+1} \tag{17}
\end{align*}
$$

And because $I_{n}(T)=0$, we can get the optimal order quantity:
$Q_{1}^{*}=\frac{\varepsilon}{\gamma}\left[\sum_{k=0}^{n-1}\left(y_{0}-\alpha p_{k}\right)\left(t_{k+1}-t_{k}\right)+\left(y_{0}-\alpha p_{n}\right)\left(T-t_{n}\right)+\frac{\beta q_{0}}{\lambda}\left(1-\frac{p_{n}}{p_{0}} e^{-\alpha T}\right)-\frac{\beta q_{0}}{\lambda p_{0}} \sum_{k=0}^{n-1}\left(p_{k}-p_{k+1}\right) e^{\left.-\lambda_{k+1}\right]}\right]$
The retailer's profit:
$\pi_{r 3}=\sum_{k=0}^{n} p_{k} E D_{k}-c_{p}\left[n\left(\gamma Q_{1}^{*}-E D_{0}\right)-\sum_{k=1}^{n}(n+1-k) E D_{k}\right]-h \sum_{k=0}^{n-1} \int_{t_{k}}^{t_{k+1}} I(t) d t-h \int_{t_{n}}^{T} I(t) d t-\left(w+c_{t}\right) Q_{1}^{*}$
With respect to p_{n} are:

$$
\begin{align*}
& \partial \pi_{r 3} / \partial p_{n}=\varepsilon\left(y_{0}-\alpha c_{p}\right)\left(T-t_{n}\right)+\frac{\varepsilon \beta q_{0} c_{p}\left(e^{-\lambda \lambda_{n}}-e^{-\lambda T}\right)}{\lambda p_{0}}+\varepsilon h\left[\frac{\alpha\left(T-t_{n}\right)^{2}}{2}+\frac{\beta q_{0}\left(T-t_{n}\right) e^{-\lambda \lambda_{n}}}{\lambda p_{0}}-\frac{\beta q_{0}\left(e^{-\lambda t_{n}}-e^{-\lambda T}\right)}{\lambda^{2} p_{0}}\right] \\
& +\varepsilon\left(h \gamma\left(T-t_{n}\right)+n c_{p} \gamma+w+c_{t}\right)\left[\frac{\beta q_{0}\left(-e^{-\lambda n_{n}}-e^{-\lambda T}\right)}{\lambda \gamma p_{0}}+\frac{\alpha p_{0}}{\gamma}\left(T-t_{n}\right)\right]-2 \alpha \varepsilon p_{n}\left(T-t_{n}\right)+2 \varepsilon p_{n} \beta q_{0}\left(e^{-\lambda h_{t}}-e^{-\lambda T}\right) / \lambda p_{0} \tag{19}\\
& \partial \pi_{r 3}{ }^{2} / \partial p_{n}{ }^{2}=-2 \alpha \varepsilon\left(T-t_{n}\right)+2 \varepsilon \beta q_{0}{ }^{\left(e^{-\lambda t_{1}}-e^{-\lambda T}\right) / \lambda p_{0}<0} \tag{20}\\
& p_{n}=\frac{2 \lambda^{2} p_{0}\left(y_{0}-\alpha c_{p}\right)\left(T-t_{n}\right)+h \lambda\left[\alpha \lambda p_{0}\left(T-t_{n}\right)^{2}+2 \beta q_{0}\left(T-t_{t_{0}}\right) e^{-\lambda \lambda_{n}}\right]-2\left(h-\lambda c_{p}\right) \beta q_{0}\left(e^{-\lambda \lambda_{n}}-e^{-\lambda T}\right)}{4 \alpha \lambda^{2} p_{0}\left(T-t_{n}\right)-4 \lambda \beta q_{0}\left(e^{-\lambda \lambda_{n}}-e^{-\lambda T}\right)} \\
& +\frac{\left(h \gamma\left(T-t_{n}\right)+n c_{p} \gamma+w+c_{c}\right)\left[\lambda p_{0} \alpha\left(T-t_{n}\right)-\beta q_{0}\left(e^{-\lambda t_{n}}-e^{-\lambda T}\right)\right]}{2 \alpha \lambda \gamma p_{0}\left(T-t_{n}\right)-2 \beta q_{0} \gamma\left(e^{-\lambda t_{n}}-e^{-\lambda T}\right)} \tag{21}
\end{align*}
$$

IV NUMERICAL EXAMPLE

Assuming that the supermarket have 5 branches. Firstly, we analysis one price adjustment. And parameters involved are as follows:

$$
\begin{aligned}
& \varepsilon=0.8, \alpha=3, \beta=3, q_{0}=1, T=10, t_{1}=7, w=5 \\
& c_{t}=0.7 c_{t}=0.7, c_{p}=0.2, h=0.2, \theta=0.6, \gamma=0.8 \\
& \lambda=0.005, p_{0}=15 .
\end{aligned}
$$

We can get the relationship between parameters

$$
\begin{aligned}
& \theta^{*}=\frac{76.4 p-8}{9 p^{2}-8.6 p}-\frac{301.5-45 p}{72 p^{2}-69 p} \\
& \theta^{*}=\frac{0.1125+0.000675 \alpha-0.000053 \beta}{0.0675 \alpha-0.00432}+\frac{0.10051 \beta-1.5705}{5.4 \alpha-0.3456 \beta},
\end{aligned}
$$

FIGURE I. THE RELATIONSHIP BETWEEN θ^{*} AND P.

FIGURE II. THE RELATIONSHIP AMONG $\theta^{*}, \alpha_{\text {AND }} \beta$

As can be seen from the graphics, the relationship between the initial price of the product and θ^{*} are inversely proportional, the relationship among θ^{*}, T, t_{1} is not particularly evident. In the same way, we can get the relationship between θ^{*} and the other parameters, Further, we also can analysis the effect of the optimal price discount to distributors' profits. The process of analysis is shown in the following table:

TABLE I. ONE-TIME PRICE ADJUSTMENT.

store	y_{0}	α	β	Q^{*}	θ^{*}	$\Delta \pi$
store1	50	3.2	3.2	192	0.64	30.8
store2	50	3	3	212	0.69	66.2
store3	50	2.8	2.8	231	0.74	105.9
store4	50	2.5	2.5	261	0.83	173.6
store5	50	2.3	2.3	280	0.90	227.1

(1)With the decrease of the fresh agriculture products' price elasticity and perceived quality elasticity, which indicates that the higher the price elasticity of fresh agricultural products, the lower the retailer's optimal order quantity.(2)With the decrease of the fresh agriculture products' price elasticity and perceived quality elasticity, the optimal price discount of fresh agricultural products θ^{*} gradually increased; (3)And along with the increase of the θ^{*} and Q^{*}.

The analysis of depreciation in several times also can be obtained. Just taking an example for depreciation twice there, and $h=0.2$.

TABLE II. TWO TIMES PRICE ADJUSTMENT.

store	y_{0}	α	β	Q^{*}	p_{1}	p_{2}	p_{2}^{*}	$\Delta \pi$
store1	50	3.2	3.2	2473	11	5	5.82	30.8
store2	50	3	3	2364	11	5	5.86	66.2
store3	50	2.8	2.8	2255	11	5	5.90	105.9
store4	50	2.5	2.5	2089	11	5	5.97	173.6
store5	50	2.2	2.2	1926	11	5	6.07	227.1

(1)As the fresh agriculture products’ price elasticity and perceived quality elasticity decreased, the optional pricing of fresh agriculture product gradually increased;(2)with the decrease of the fresh agriculture products' price elasticity and perceived quality elasticity, the optimal order quantity also gradually decrease. (3) under the two times price adjustment, the retailers can obtain different maximum profits under different optimal order quantity Q^{*} and different optimal price discount p_{2}^{*}.

V CONCLUSIONS

We can concluded that: (1) In the price adjustment of one time and two times, the retailers both have the optimal order quality and optimal price discount; (2)The higher of the initial price, the lower of the price discount; (3) The fresh agriculture product 's having higher price elasticity and perceived quality elasticity, should develop the lower price discount.

ACKNOWLEDGEMENT

This article is supported by Hunan province natural science fund project (13JJB001) and Hunan University Young Teacher Growth Plan. Thanks for their help and support.

REFERENCES

[1] Karen G,Yarocha A L.Strategies for increasing fruit and vegetable intake in grocery stores and communities:policy, pricing and environmental change [J].Preventive medicine 2004, 39 (2)75-80.
[2] Gallego G, Van Ryzin G. Optimal dynamic pricing of inventories with stochastic demand over finite horizons. Management Science, 1994. 40(2), 999-1020.
[3] Banerjee PK, Turner TR. A flexible model for the pricing of perishable assets.[J]Omega2012.40(5):33-44.
[4] Shah B J, Shah N H, Shah Y K. EOQ model for time-dependent deterioration rate with a temporary price discount.[J] Asia-Pacific Journal of Operational Research 2005;22(4):479-85.
[5] Tajbakhsh M M, Lee C, Zol faghari S. An inventory model with random discount offerings.[J]Omega 2011.39(6):710-8.
[6] Cai X Q, Chen J, Xiao Y B et al. Optimal decisions of the manufacturer and distributor in a fresh product supply chain involving long distance transportation[R].Working Paper, School of Economics and Management, Qinghua University, 2006;
[7] Wang Lei, The EOQ model of the fresh agricultural products considering the consumer's utility and the preservation [J].Chinese management science, 2011, 19(1)100-108.

