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Abstract-The problem of finite-time synchronization between two 
chaotic gyros with uncertain and disturbances is investigated. On 
the basis of a double power reaching law, a nonsingular terminal 
sliding mode control algorithm was proposed to restrain 
chattering and improve convergence speed of terminal mode 
control. First, a new nonsingular terminal sliding surface is 
introduced and its finite-time convergence to the equilibrium is 
proved. Then, a sliding mode controller is proposed based on a 
double power reaching law to force the trajectories of the 
synchronization error system onto the sliding surface and remain 
on it forever, and the finite-time synchronization conditions are 
obtained. Finally, simulation results are presented to illustrate the 
effectiveness of the design. 
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I INTRODUCTION 
Synchronization of the chaotic dynamical systems has 

gained a great deal of interest among researchers and 
engineers from variety of research fields in recent years [1-5]. 
In this line, many different methods have been applied 
theoretically and experimentally to synchronize chaotic 
systems, such as active control, adaptive control, linear control 
and sliding mode control [6-10]. 

The gyro is one of the most interesting dynamical systems. 
Gyros have found useful applications in optics, navigation, 
aeronautics and space engineering fields. The pioneering 
paper on the concept of chaotic motion in gyros was not 
presented until 1981. Chen [11] analyzed the dynamics of a 
symmetric gyro with linear plus-cubic damping subjected to a 
harmonic excitation. Lei [12] proposed the active control 
method to achieve complete synchronization between two 
identical chaotic gyros. Yan [13] addressed the problem of the 
chaotic gyros with fully unknown parameters using adaptive 
sliding mode control. Yau [14] has developed fuzzy 
controllers for synchronizing two uncertain chaotic gyros. So 

far, most of the existing results related to synchronization 
mainly focused on asymptotic synchronization. From a 
practical point of view, however, it is more valuable that the 
synchronization objective is realized in a finite time. 
Furthermore, the finite-time synchronization has demonstrated 
better robustness and disturbance rejection properties. 

In this paper, we present a design scheme for the terminal 
sliding mode (TSM) control which can realize chaotic 
synchronization between two chaotic gyros with uncertain and 
disturbances in finite time. 

II SYSTEM DESCRIPTION 
The dynamics of a symmetrical gyro with linear-plus-cubic 

damping of the angle θ can be expressed as [11]: 
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Where s inf tω  is a parametric excitation that models the 
base excitation, 1c θ&  and 

3
2c θ&  are the linear and the nonlinear 

damping terms, respectively, and the term ( )22 31 cos sin sinα θ θ β θ− −  
is the nonlinear resilience. Given the states 1 2,x xθ θ= = & , 
this system can be transformed into the following nominal 
form: 
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The nonlinear gyros system exhibits chaotic behavior for 
the specific parameter values 
of

2 100,α = 1,β = 1 20.5, 0.05,c c= = 2, 35.5fω = = . The chaotic 
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motion and the strange attractor of system (2) with initial 
conditions of ( ) ( )1 20 1, 0 1x x= = −  are illustrated in Fig. 1. 

 

FIGURE I. STATE TRAJECTORIES OF SYSTEM AND THE CHAOTIC 
ATTRACTOR OF SYSTEM (1). 

Assume that two above-mentioned systems are given, one 
is the drive system with the subscript 3, and the other is the 
response system with the subscript 4. The drive system is 
given by 
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The response system is given by 
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where ( ) ( )T
1 2,x t x x=  is the state vector of the drive gyros, 

( ) ( )T
1 2,y t y y=  is the state vector of the response system, 

( )1 2,f y yΔ and ( )d t  are unknown model uncertainties and 
external disturbances of the response system, respectively; and 

( )u t  is the control input to be designed later. To solve the 
finite-time synchronization problem, the synchronization error 
between the drive (3) and response systems (4) can be defined 
as ( )T

1 2( ) ,e t e e= . Let the error variables be 1 2 1 2 2 1,e x x e y y= − = − . 
Therefore, with subtracting Eq. (4) from Eq. (3), the error 
dynamics is obtained as follows: 
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Where ( ) ( )2 3
1 1 1 1 1, 1 cos sinx y y yφ = − − ( )2 3

1 11 cos sinx x− , 

( ) 3 3
2 2 2 2 2,x y y xφ = − ; ( )3 1 1 1 1, s in s inx y y xφ = − . 

Assumption 1 It is assumed that the 

external ( )1 2,f y yΔ and disturbances ( )d t are norm-bounded: 

( )1 2,f y y hΔ < , ( )d t d< .( 0h > , 0d > ) 

Definition 1 Consider the error dynamical system (5). If 
there exists a constant ( )( )0 0T T= >e such that 

( ) ( ) ( )lim lim 0
t T t T

t t t
→ →

= − =e y x
and ( ) 0 ,t t T≡ >e , then 

states of the system (5) will converge to zero in the finite 
timeT . 

The control goal of this paper is to design a suitable 
nonsingular terminal sliding mode controller for stabilization 
of the uncertain system (5) around zero. 

III MAIN RESULTS 
To realize the aforementioned procedure, the terminal 

sliding mode can be defined 
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Where 0c > ，both p and q are positive odd integers, 
1 2q p< < . 

Theorem 1 Consider the error dynamics (5), if the TSM is 
designed as (6), then the system state trajectory starting from 
any initial state ( )1 0re t ≠ will converge to zero in finite 

time st , given by ( ) ( ) 1
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Where rt is the time of synchronous error state trajectory 
reaching to the sliding surface ( ) 0s t = . 

Proof Consider the following Lyapunov function: 
2

1
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When the sliding surface ( ) 0s t =  is reached, from (6), we 
have 
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From ( ) 0s t = , one can obtain 1 0e = . Furthermore, 
from (6), we have 
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Where ( )1 0e t = is the terminal attractor of the system (7). 

The finite time st  that is taken to travel from ( )1 0re t ≠  

to ( )1 0r se t t+ = is given by 
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This completes the proof. 
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Having established the suitable sliding surface, the next 

step is to determine an input signal ( )u t to guarantee that the 

error system trajectories reach to the sliding surface ( ) 0=ts  
and stay on it forever. Therefore, a sliding mode controller is 
proposed based on a double power reaching law [15] as: 
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Where 1 20 , 0k k> > , 1, 0 1λ μ> < < . 

Theorem 2 For system (5), if the controller is designed as 
(8), then system trajectories reach to the sliding surface in 
finite time. 

Proof Consider the following Lyapunov function:
2

2
1 sV =

. 

Calculating the derivation along system (5) yields, from (6) 
and (8). 
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Then for 02 =e , it is obtained ( ) ( )tcets 1= . By 
substituting (8) into (5), we have 
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So, there are
μλ skske 212 −−≤&  for 0>s  

and
μλ skske 212 +≥& for 0<s . 

Therefore, it is concluded that the sliding mode can be 
reached from anywhere in the phase plane in finite time. 
Hence the proof is completed. 

Remark 1 According to theorem 1 and theorem 2, the 
terminal sliding mode control law (8) and the terminal sliding 
surface (6) can make the response system reach the drive 
system in finite time. 

IV SIMULATION RESULTS 
To verify the effectiveness of the proposed finite-time 

controller in the synchronization of two chaotic gyros with 
uncertainty and external disturbance, a numerical simulation is 
performed. The system uncertainty and external disturbance 

are assumed to be ( )1 2 1, 0.1sin( )f y y yΔ = − , ( ) 0 .2 cos( )d t tπ= , 
Respectively, The positive constants are chosen as 

2 1 0 0α = , 1 ,β = 2 ,λ = 0 . 5μ = 1 20 .5 , 0 .0 5 ,c c= =

2, 35.5fω = = 6, 3, 5c p q= = = , 1 10k = , 2 6 , 0 .1, 0 .2k h d= = = . 

The time responses of synchronous error states are 
depicted in Fig. 2. We can see all the error states quickly 
converge to zero. As shown in Fig. 3, it is apparent that the 
trajectories of the response system quickly attain those of the 
drive system. 

 

FIGURE II. SYNCHRONIZATION ERROR IN TWO CHAOTIC 
SYSTEMS. 
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FIGURE III. STATE TRAJECTORIES OF THE DRIVE SYSTEM AND 
THE RESPONSE SYSTEM. 

V CONCLUSIONS 
In this paper, the finite-time synchronization problem 

between two chaotic gyros with uncertainties and external 
disturbances via terminal sliding mode control are considered. 
Based on the Lyapunov stability theorem, a sufficient finite-
time synchronization criteria is derived. Finally, Numerical 
simulations are used to verify the proposed control techniques. 
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