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Abstract—Accurate indoor navigation, especially precise attitude 
estimation is a challenge topic. Unlike the rate gyroscope in an 
IMU, the camera based visual-gyro does not suffer from drift 
errors. In order to overcome the drawbacks of the standalone 
systems, an INS/visual-gyro integration using direction cosine 
matrix (DCM) models is presented. Compared to the 
conventional Euler angle models, the usage of DCM can provide 
linear system models and avoided singularity problems. Using 
iterative closest point (ICP) algorithm, the depth measurement 
from a RGB-D camera can be converted to positioning 
information and further added to the integrated navigation 
system. To show the performance of the presented system, one 
field experiment is carried out with a mobile robot and the 
numerical results are shown. 
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I. INTRODUCTION 
Precise attitude estimation is a challenge topic for indoor 

navigation. Microelectromechanical systems (MEMS) based 
inertial measurement units (IMUs) are widely used in 
navigation applications. The attitude determination using 
standalone IMU suffers from drift error propagation because of 
gyro biases. The magnetometer is affected by magnetic 
disturbances, which limit the use of magnetometer for attitude 
determination in indoor applications. In this case, the camera-
based direction assistance was proposed to improve the heading 
estimation. 

In this work, an INS/visual-gyro integration using direction 
cosine matrix (DCM) based models is presented. The 
INS/visual-gyro integration using the DCM attitude 
representation avoids the singularity problem that occurs with 
Euler angle representations. Furthermore, a linear (or pseudo-
linear if augmenting the gyro bias) process model for the DCM 
update with respect to its parameters is formulated. Moreover, 
a linear observation model is derived for visual-gyro triad with 
respect to the DCM elements. 

The advent of RGB-D sensors such as Microsoft Kinect has 
resulted in great progress due to its low cost and high output 

frame rate. By using a Kinect sensor, many works for stand-
alone camera position tracking have been introduced. RGBD 
odometry is introduced recently as a real time application [1]. 
By using iterative closest point (ICP) algorithm [2], Kinect 
fusion (KinFu) [3] has demonstrated great results for indoor 
environment reconstruction. However, both KinFu and RGB-D 
algorithm works pair-wisely. Errors from each registration pair 
can be accumulated and results in positioning and attitude drifts. 

Making use of the complementary nature of INS and 
vision/range based systems; the combination of them is 
expected to provide a synergetic solution. The integration 
method is attractive as it is a trend of the usage of 2D/3D 
camera in navigation applications. 

The rest of this paper is organized as follows. The second 
section introduces visual gyroscope using vanishing points. The 
vanishing point finding approach and the camera attitude 
determination method used in this work are described in this 
section. The third section presents INS/visual-gyro/ICP 
integration. In this section, DCM based INS/Visual-gyro 
system modelling and the system block diagram are given in 
detail. In the fifth section, one field experiment is described and 
the numerical results are presented. Finally, conclusions of this 
research are provided. 

II. VISUAL GYROSCOPE USING VANISHING POINTS 
The visual gyroscope technique makes use of computer 

vision algorithms to transform information found from images 
into the camera rotation. Unlike rate gyroscope in a MEMS 
based IMU, the visual gyroscope does not suffer from drift 
errors. Therefore, in this work, it is used to calibrate the IMU 
gyro output through INS/visual-gyro integration. The visual 
gyroscope employed here is based on tracking vanishing points 
in consecutive images. 

The vanishing points are the points in an image where the 
lines parallel in the real world seem to intersect. The detected 
motion of the vanishing points can be converted into camera 
rotation. There are normally three useful vanishing points in an 
image which are central, vertical and horizontal vanishing 
points. They are intersects of the parallel lines along 3 
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orthogonal axes. This algorithm is suitable for indoor 
environments, since the human made constructions are mainly 
composed of orthogonal structures and the parallel lines as well 
as the vanishing points can be detected. 

Some steps are needed to calculate the locations of the 
vanishing points [4]. Firstly, the images taken in low-light 
environments are filtered out using Gaussian convolution filter 
[5]. Then edges of objects are located by tracing fast changes in 
pixels’ brightness values using the canny edge detector and 
straight lines are separated from other edges using the Hough 
line detector [6]. The last step is finding the vanishing point 
locations in the image frame, which is using the random sample 
consensus (RANSAC) method [7]. The processing results of 
edge detection, parallel line detection and vanishing point 
finding are shown in Figure 1. The detected parallel lines along 
3 orthogonal axes are marked with red, green, blue colors 
respectively. Only the central vanishing point is shown in the 
figure because the other two vanishing points are located 
outside the image scope. 

 
FIGURE I.  EDGE DETECTION, LINE DETECTION AND VANISHING 

POINT FINDING. 

After vanishing point is successfully found, the remaining 
task is to exact information of the attitude changes from the 
locations of the vanishing points. The rotation matrix of the 
camera may be resolved by using VPs and the calibration 
matrix of the camera, which is shown with equation: V = KR . 
where V is the vanishing point location matrix, R is the 
calibration matrix and K is the camera rotation matrix. The 
calibration matrix K contains information of the intrinsic 
camera parameters, which includes the focal length and the 
principal point. They can be approximated using the values in 
the image file headers, yet their exact values are obtained by 
calibrating the camera. The matrix R is the three-dimensional 
rotation of the camera. 

However, there are limitations of the visual-gyro 
application. For instance, the visual-gyro does not work when 
the vanishing point finding is not available, which happens 
when no vanishing point can be found or too many disturbing 
lines detected in the image. Moreover, since the high 
computational requirement, the frequency of visual-gyro 
output is relatively low and the performance for fast rotation 
estimation is limited. 

III. INS/VISUAL-GYRO/ICP INTEGRATION 

A. DCM based INS/Visual-gyro System Modelling 
However, making use of the complementary nature of INS 

and visual gyroscope, the INS/visual-gyro integration is 
expected to yield a synergetic effect, which can overcome the 
limitations of both systems. In this work, DCM based system 
models are used for INS/visual-gyro integration to estimate the 
attitude. 

The advantage of using a DCM based model is having a 
linear process model for the DCM update with respect to its 
parameters. However, augmenting the gyro bias vector makes 
the process model non-linear which can be handled using a 
pseudo-linear process model [8]. Another important benefit of 
using the DCM attitude representation is avoiding the 
singularity problem that occurs with Euler angle representation. 

The strap-down INS mechanization regarding the DCM 

matrix is shown as the following equation [9]: 
n n
b b nb = ×C C ω&

, 

where 
n
bC  is the DCM rotation matrix that transforms the 

inertial measurements from the body frame to the local 

navigation frame and nbω  is the turn rate of body frame with 
respect to the local navigation frame. The elements of the DCM 
are trigonometric functions of the Euler angles defined as  
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For the integration system, the state vector to be estimated 
is composed of the nine elements of the DCM and gyro triad 
bias vector, which is described as the following form: 
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The DCM propagation is given as n n
b, b, 1 1k k k− −=C C A , where 
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ibω  is rotation rate of the body frame [10]. 

Assuming that the angular velocity vector has little change 
during the update interval, we can approximate the angle 

rotation vector σ  as 
-1
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1k−A  can be expanded and then reformulated with a second 
order approximation as: 
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By ignoring the quadratic terms of gyro bias and noise, A 
can be approximated and written in terms of the exact matrix 

Ã as 1 1k k gyro t− − ⎡ ⎤≈ − Δ ×⎣ ⎦A A b%
. 
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The system process model can be derived as 
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With system alignment between INS and visual-gyro, the 
DCM elements are linear related to the camera rotation matrix 
R . The Kalman filter is employed in this work for estimating 
the attitude and gyro-bias which is included in the state vector. 

B. System Block Diagram of INS/Visual-gyro/ICP 
Integration 
Using ICP algorithm, the depth measurement from a RGB-

D camera can be converted to localization information and 
further be added to the integrated system for position update. 
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FIGURE II.  INTEGRATED SYSTEM FOR MOBILE ROBOT 

NAVIGATION. 

Figure 2 shows the system block diagram of INS/Visual-
gyro/ICP integration for mobile robot navigation. 

IV. FIELD EXPERIMENT 

End

Start

Visual-
gyro
gap

 
FIGURE III.  EXPERIMENTAL HARDWARE AND SCENARIO. 

One field experiment is contacted. The core experimental 
sensors are shown in Figure 3. The inertial sensor used here is 
MEMS Xsens MTi. The visual sensor employed here is 
Microsoft Kinect sensor, which can provide the synchronized 
RGB and D measurement. The Kurt2 mobile robot is used as 
the test platform. The experiment is contacted in the corridor 
of RST institute in University of Siegen. The trajectory of the 
mobile robot is shown with blue curve. The red marked part is 
visual-gyro gap area, where the visual-gyro is not available 
because of the vanishing point finding failures. 

Odometry
INS/VG/odometry/ICP
INS/odometry/ICP
Reference point

Method Odometry
INS/odometry/

ICP
INS/VG/

odometry/ICP

Average Error 2.34 m 1.47 m 0.67m

Final error 2.96 m 1.95 m 0.25 m

P1 (start point) P2

P3

P4
P5 (end point)

13  
FIGURE IV.  ROBOT TRAJECTORY ESTIMATION RESULT. 

The trajectory estimation result is shown in Figure 3. The 
five green dots show the reference points in the true trajectory. 
The average position error and final error (distance to the end 
point) are shown in the table. 

V. CONCLUSION 
This paper explores the camera based visual gyroscope 

algorithm. A DCM based INS/visual-gyro integration is 
presented. In order to avoided singularity problems and obtain 
a linear or pseudo-linear system, the system modelling using 
DCM has been done. The INS/visual-gyro/ICP integration is 
employed for mobile robot navigation. One indoor experiment 
is carried out. The results show that the presented integration 
can bridge the visual-gyro gaps. It can also outperform the 
standalone odometry and INS/odometry integration in 
trajectory estimation. 
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