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Abstract—This article applies four popular discretization schemes, 
i.e. Andersen’s quadratic exponential (QE) scheme, Zhu’s scheme, 
semi-analytical (SA) scheme, and Alfonsi’s second-order scheme, 
to numerically simulate the double Heston stochastic volatility 
model. We compare the quality of these schemes in paths 
simulating by measuring the accuracy in option pricing, with 
reference values offered by the Fourier COS expansion method 
(namely the COS method, proposed by F. Fang & C. W. 
Oosterlee,2008). Numerical results show that not all of these 
widely used schemes are of acceptable quality in simulating the 
asset paths when both the Feller conditions in the stochastic 
volatility model are not satisfied. 
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I. INTRODUCTION 
An increasing amount of literature suggest that the double 

Heston stochastic volatility (hereinafter, dbH) model is 
potentially a good financial model and expected to have an 
encouraging future in option pricing and risk hedging[1]. 
However, an exact simulation to the dbH model is proved to be 
impossible. The existing effective disretization schemes are the 
quadratic exponential (hereinafter, QE) scheme[2], Zhu’s 
scheme[3] and Alfonsi’s second-order scheme[4], and etc. All 
schemes mentioned above claim that they can achieve good 
accuracy in simulating the Heston stochastic volatility 
model(see[5]). The motivate of this research is to find a 
genuinely qualified disretization scheme for the dbH model 
under any censorious condition. To this end, we compare all 
schemes’ performances in simulating the dbH model on the 
same ground (i.e., using the same parameters of model, the 
same time step and controlling variables in experiments on the 
same PC), from a common but trivial test to the most severe 
check.  

II. MODEL PRESENTATION 
As an ordinary extension of the Heston model, the dbH 

model(see [6]), under the risk-neutral Q -measure, is defined by 
two independent variance processes, i.e. 
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where r  is the risk-free rate of return; q  is the yields flow 
rate; θ⋅  is the long variance, κ⋅  is the rate at which ( )V t⋅  
reverts to θ⋅ ; ξ⋅  is the volatility of the volatility which governs 

the variance of ( )V t⋅ ; ( ) ( )S VW t W t
⋅

⋅ ,  are Wiener processes, with 
correlation coefficient ρ⋅ . 

III. DISCRETIZATION SCHEMES FOR THE DBH MODEL 
For comprehensiveness of content, we summarize the 

famous QE scheme, Zhu’s scheme, SA scheme, and Alfonsi’s 
second-order scheme in this section. More details can be found 
in Andersen (2008),Zhu(2011), Alfonsi(2010), Sun, Zhang & 
Li(2014) [7]and references therein. 

A. Discretization Scheme for the Asset Price Process 
For the price process, the predictor-corrector scheme for the 

log-price under the double Heston model can be written as (see 
[2][7]): 
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independent standard Gaussian random variables, independent 
of those in the variance processes. 

B. Discretization Scheme for the Variance Process 
1) The QE scheme 
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and ( 1 2)jZ j = ,  is a 
standard Gaussian random variable independent of each other; 

( 1 2) [0 1]jU j = , ∈ ,  is an independent uniform random number. 
2) The Zhu’s scheme: Define new variables j j

t tv V=  
(where 1 2j = , ). The Zhu’s scheme for the variance process 
writes  ˆ( ( ) )ˆ ˆ ˆ
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(jZ  1 2)j = ,   is a standard Gaussian random variable 
independent of each other. 

3) The Semi-analytical scheme: In the exact simulation 
scheme (Broadie & Kaya (2006)[8]), the variance process was 
well approximated by  2ˆ ( )
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non-central chi-squared distribution  2 ( )dχ λ′  can be 
approximated by 2 2

1( ) dZ λ χ −+ +  when 1d >  and by 2
2d Nχ +  

when 0d > , with 2(0 1)Z N νχ, ,  an ordinary chi-squared 
distribution with ν  degrees of freedom and where N  is 
Poisson distributed with mean / 2λ . 

We combine the above variance sampling procedure and 
the price sampling formula (2) to form the semi-analytic (SA) 
Monte Carlo scheme.  The difference between the SA scheme 
and the exact simulation scheme lies in the way sampling the 
integral of the variance process within time step Δ . In Broadie 
& Kaya (2006), this integral is calculated by a Fourier 
inversion method. However, numerical results in the literature 
have shown that the exact approach is computationally 
expensive (Broadie and Kaya, 2006), and have worse speed-
accuracy trade-off than simpler schemes (Lord et al. 2010)[5]. 

Rather than using Fourier methods, the SA scheme applies 
the following rule to approximate to the integral: 

1 2( ) [ ( ) ( )]
t

t
v t dt v t v tγ γ

+Δ
≈ Δ + + Δ∫  for certain constants 1γ  and 2γ . 

There are multiple ways for setting 1γ  and 2γ , the simplest 
being the Euler-like setting 1 21 0γ γ= , = . A central 
discretization, on the other hand, would set 1 2 1 2γ γ= = / . In 
this research, we take the last one. 

4) The second order Alfonsi’s scheme (Alf2) 
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2( )t tE V V+Δ= | , and jZ  is a discrete random variable such that 
2
3( 0)jP Z = = , 1

6( 3)jP Z = = ,  1
6( 3)jP Z = − = . 

IV. NUMERCIAL EXPERIMENTS 

A. Parameters Settings 
The difficulty of simulating the Heston-type model lies in 

the effective discretization to the variance process. Feller (1951) 
has proved that the variance process in the Heston model is 
strictly non-negative. Therefore, for rigorous check, we 
consider three increasingly difficult cases: 1) Case1: 

2 2
1 2

1 21 22 2
ξ ξ
θ θκ κ≥ , ≥

; 2) Case2: 
2 2

1 2

1 21 22 4
ξ ξ
θ θκ κ≥ , <

; 3) Case3: 
2 2

1 2

1 21 24 4
ξ ξ
θ θκ κ< , <

. 

TABLE I. REFERENCE VALUE OF EUROPEAN CALL OPTION CALCULATED WITH THE COS METHOD(F. FANG & C. W. OOSTERLEE,2008, SEE [9]). 

Strikes Term Reference Price  
Case1 Case2 Case3  

70%  1T =  47.0316  49.0729  50.5082   
100%  1T =  33.6541  36.3669  38.2680   
130%  1T =  23.8377  26.9122  29.0825   
70%  30T =  82.1304  83.2689  85.1216   

100%  30T =  76.0970  77.5427  79.9137   
130%  30T =  70.5234  72.2215  75.0317   

Case1 is equivalent to that both Feller conditions are 
satisfied, which makes Case1 the easiest test among three cases. 
As one of Feller conditions is no longer satisfied, this makes 
discretization more challenging. The most difficult situation is 
Case3 where both Feller conditions are far from satisfied, 

which implies the most probability masses of 
1

tV  and 
2

tV  
concentrate on the near of zero. Case3 is then a rigorous test for 
all discretization schemes.  

In experiments, we take: 1) 1 20 9 1 2κ κ= . , = . ; 2) 
1 20 9 0 3κ κ= . , = . ; 3) 1 0 2κ = . ,  2 0 3κ = .  for above three Cases, 

respectively. The rest parameters in the dbH model are: 
1 20 1 0 15θ θ= . , = . , 1 2

0 00 6 0 7V V= . , = . , 1 20 4 0 5ξ ξ= . , = . , 1ρ = 0 9− . ,  
2 0 9ρ = − . . Besides, let 0 0100 0 7 0 0 1 3 0 03S K S S S r= ; = . , , . ; = . , 

1 30T = ,  years. For QE scheme, 1 20 5 0 5γ γ= . , = .  and 1 5cΨ = . . 

B. Numerical Pricing Results 

Take Case3 with 1 8Δ = /  as an example. We plot the 
absolute bias curve (see Figure 1) for four discretization 
schemes, i.e., the QE scheme, Zhu’s scheme, SA scheme and 
Alf2 scheme. Here, the bias bias is defined as the pricing 
differences between a discretization scheme and the COS 
method. To show how well these schemes works, we also 
provide the root-mean-squared (RMS) error curve in Figure 2 

with 
2 2

fRMS bias σ= +
(wher fσ  denotes as the standard error 

of payoff samples ˆ( ) 1 2i
pathsTf i NS , = , , ,L ). Figure 2 shows that 

except the Zhu’s scheme, the rest schemes have good 
convergences in option pricing in this example. 
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FIGURE I.  ACCURACY OF PRICING SCHEMES FOR EUROPEAN 
CALL OPTION 

 
a.T=1 

 
b.T=30 

FIGURE II.  CONVERGENCE OF DISCRETIZATION SCHEMES FOR 
EUROPEAN CALL OPTION. 

Figure 1 shows that when the time step takes 1 8Δ = / , the 
SA scheme and the Alfonsi’s second-order scheme, are 
generally better than the QE and Zhu’s scheme, when both 
Feller conditions in the dbH model are not satisfied. For the QE 
scheme, it would need a smaller time step Δ  to achieve the 
same degree of accuracy as the SA scheme; while for Zhu’s 
scheme, it fails to price rightly the option when the maturity is 
30-year (which also can be seen from Table 2). 

TABLE II. ACCURACY OF FOUR DISCRETIZATION SCHEMES WITH 1 8Δ = /   AND SIMULATION PATHS
54 10pathsN = ×

 .  ALL DATA IN TABLE ARE LOGARITHMIZED 
WITH BASE 10. 

Schemes 
QE Zhu SA Alf2 

1T =  30T =  1T =  30T =  1T =  30T =  1T =  30T =  
Case1 

00 7K S= .  
Error -1.1290 -2.0315 -0.4009 -0.8233 -1.2190 -1.4437 -1.4510 -0.1271 
RMS -1.0926 -1.6696 -0.3995 -0.8196 -1.1662 -1.3893 -1.3233 -0.1269 

Case2 
00 7K S= .  

Error -1.1945 -1.5768 -0.7515 0.8511 -1.7011 -2.3979 -1.8928 -0.8690 
RMS -1.1409 -1.4776 -0.7438 0.8511 -1.4067 -1.6882 -1.4425 -0.8642 

Case3 
00 7K S= .  

Error -2.3872 -1.7122 -2.9208 1.0434 -1.2565 -1.8416 -2.0915 -1.9136 
RMS -1.4522 -1.5467 -1.4535 1.0434 -1.1831 -1.5986 -1.4437 -1.6198 

Case1 
0K S=  

Error -1.4389 -1.1068 -0.1850 -0.4618 -1.6536 -1.7375 -1.3458 -0.2933 
RMS -1.2097 -1.0809 -0.1837 -0.4604 -1.2636 -1.4763 -1.1726 -0.2926 

Case2 
0K S=  

Error -1.2020 -1.2807 -0.5050 0.9915 -1.6003 -1.9469 -1.9066 -0.6080 
RMS -1.0888 -1.2233 -0.4991 0.9915 -1.2396 -1.5086 -1.2725 -0.6050 

Case3 
0K S=  

Error -2.2924 -1.7721 -1.1649 1.1810 -2.8539 -1.9355 -1.3382 -1.6383 
RMS -1.2725 -1.4685 -1.0620 1.1810 -1.2733 -1.4989 -1.1530 -1.4271 

Case1 
01 3K S= .  

Error -1.7190 -1.7932 0.0022 -0.3320 -1.0846 -1.5482 -0.8630 0.1296 
RMS -1.1599 -1.3979 0.0031 -0.3307 -0.9755 -1.3344 -0.8170 0.1298 

Case2 
01 3K S= .  

Error -0.9101 -3.0969 -0.2763 1.0952 -0.8864 -1.7878 -0.9076 -0.6085 
RMS -0.8514 -1.4237 -0.2727 1.0952 -0.8330 -1.3872 -0.8496 -0.6035 

Case3 
01 3K S= .  

Error -0.9602 -2.8861 -1.1851 1.2800 -1.2882 -2.1487 -1.6345 -1.6364 
RMS -0.8864 -1.4179 -1.0195 1.2800 -1.0615 -1.4101 -1.1325 -1.3497 
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We also compare the efficiency of four computational 
schemes. Take Case1 with 1T =  for example. The CPU times 
for the QE, Zhu’s, SA and Alf2 scheme are: 0.316, 0.2338, 
1.4837 and 0.4757 in seconds, respectively. The 
implementation code is programmed with Matlab language and 
executed on a PC equipped with Win7(64bit) and Intel(R) 
Xeon(R) CPU E5-1620 v2 @3.70GHz 3.70GHz RAM 8.00GB. 
Though the efficiency of SA scheme is the lowest among all 
schemes, this cost is still acceptable if compared with that of 
the exact simulation method proposed by Broadie & Kaya 
(2006) in which the cost is with hours in unit on the same PC. 

V. CONCLUSIONS AND FINAL REMARKS 
This article gives a simple but rigorous comparison for 

Andersen’s QE scheme, Zhu’s scheme, semi-analytical scheme, 
and Alfonsi’s second-order scheme under the double Heston 
stochastic volatility model. Numerical results show that, the SA 
scheme is at least equally good as the QE scheme and Alfonsi’s 
second-order scheme under any conditions. When the Feller 
conditions in the double Heston stochastic volatility model are 
not satisfied, the QE scheme may suffer from low accuracy if 
the time step is not small enough, while the Zhu’s fails to 
correctly sample the asset path. 

ACKNOWLEDGEMENTS 
This work was supported by the NFS of Guangdong 

Province with grant titled “The Key Technologies of Nearly-
Exact Simulation to Multi-Asset Heston Model: Distribution 
function and Implicit Solution Based Approaches”(2014). 

REFERENCES 
[1] Pricing Partners. Pricing Partners implements Double-Heston Model for 

its Equity Module, News and Events, 2009, 9. 
http://ww.pricingpartners.com/ news&events/press-release/167.html  

[2] Andersen, L.Simple and Efficient Simulation of the Heston Stochastic 
Volatility Model.Journal of Computational Finance, 11 (), pp.1-42, 2008.  

[3] Jianwei Zhu: A Simple and Accurate Simulation Approach to the Heston 
Model, The Journal of Derivatives, 18(4), pp.26-36, 2011.  

[4] Aurelien Alfonsi: High order discretization schemes for the CIR process: 
Application to affine term structure and Heston models, Math.  Comp. 
79, pp.209-237,2010.  

[5] Lord, R., Koekkoek, R. and Van Dijk, D., A comparison of biased 
simulation schemes for stochastic volatility models, Quantitative Finance, 
10(2), pp. 177-194, 2010.  

[6] G., Pierre and P., Dylan, Efficient Simulation of the Double Heston 
model, SSRN Working Paper, July 18, 2009. 
http://papers.ssrn.com/sol3/papers. cfm?abstract_id=1434853 

[7] Y.F. Sun, G.Y. Zhang and S.Q. Li. An Effective Simulation of Heston 
Model: Combining Quadratic Exponential and Exact Simulation 
schemes, WIT Transactions on Modelling and Simulation, 2014, 
forthcoming.  

[8] Broadie, M., and Kaya, O&& .Exact Simulation of Stochastic Volatility and 
Other Affine Jump-Diffusion Processes. Operations Research,54(2), 
pp.217 -231, 2006.  

[9] F.Fang and Cornelis W. Oosterlee. A novel pricing method for European 
option based on fourier-cosine series expansions. SIAM Journal of 
Scientific Computing, 31(2), pp.826-848, 2008. 

559




