

LS Algorithm for Semi-online Scheduling Jobs with
Nondecreasing Release Times and Nondecreasing

Processing Times
F. Tang

School. of Industry
Hunan Normal University
Changsha 410081, China

J. Nie
Dept. of Math

Hunan Normal University
Changsha 410081, China

Abstract—In this paper, semi-online scheduling jobs with non-
decreasing release times and non-increasing processing times on
m identical parallel machines is considered. The aim is to
minimize the last completion time of all machines. It is proved
that, for any m identical parallel machines, 3/2-1/2m is an upper
bound of the worst case performance ratio of List Scheduling(LS)
algorithm.

Keywords-release time; processing time; semi-online; LS
algorithm

I. INTRODUCTION
The problem of scheduling jobs on identical parallel

machines is an important part of combinatorial optimization
problem. It is defined as follows: Given a job set L =
{J1,J2,...,Jn} of n jobs where job Ji has non-negative
processing time pi, partition the job set into m subsets so as to
minimize the maximum sum of processing times of the jobs in
each subset.

A scheduling problem is called off line if we have complete
information about the job data before constructing a schedule.
In contrast, the scheduling problem is called online if the jobs
appear one by one and it requires scheduling of the arriving job
irrevocably on a machine without knowledge of the future jobs.
The processing time of next job becomes available only after
the current job is scheduled. The worst case performance ratio
of an algorithm A is defined as:

() ()
()LC
LC

AmR OPT

A

L max

maxsup, =

where)(max LC A
 and)(max LCOPT

 are the maximum completion
times of algorithm A and the optimal off-line algorithm
respectively. Graham (1996) proposed the List Scheduling (LS)
algorithm to minimize the maximum completion time for
online scheduling of n jobs on m identical parallel machines.
The LS algorithm always assign the current job to the machine
that will complete it first.

In the Graham's classical on-line scheduling problem on m
identical machines, all jobs are released at time zero one by one.
Li and Huang(2004) generalized Graham's problem by assume
that each job has a release time. A job Jj is informed of a 2-
tuple (rj,pj), where rj and pj represent the release time and the
processing time of the job Jj, respectively. This problem can be
referred to as generalized on-line scheduling problem or on-line
scheduling problem for jobs with arbitrary release times or

orders on-line scheduling problem. Li & Huang showed that 3-
1/m is the worst case performance ratio of the LS algorithm.

 Liu et al. proposed semi-online schedule in 1996. Seiden et
al. considered semi-online scheduling problem for jobs with
release time zero and non-increasing processing times in 2000.
They firstly showed that algorithm LS has worst case
performance ratio 4/3-1/3m. When m=2, they proved that LS
algorithm is the best. Later Cheng et al.(2012) proved that LS
algorithm is also optimal for m=3 and they also proposed an
algorithm with worst case performance 5/4 for m ≤ 4.

Li et al(2013) considered semi-online scheduling on m
machines for jobs with non-decreasing release times and non-
increasing processing times. They point out that it is easy to
show that 3/2-1/2m is the upper bound of the worst case ratio
of LS algorithm. But in fact the result is not so obvious. In this
paper we give a new and full proof.

II. SYMBOLS
For job list L={J1,J2,...,Jn}, we always use rj and pj to

denote the release time and processing time of job
Jj(j=1,2,…,n) and assume they satisfy the following
inequalities:

r1≤r2≤… ≤ rn, p1≥ p2≥ …≥ pn.
Now we define some symbols as follows：

1. Idle interval (a,b): Let (a1,b1),…,(aT,bT) are all of the
idle intervals of job list L in the LS schedule. (a,b) is one of
the T idle intervals satisfying b=max1≤i≤ pbi;

2. U, U*: ∑ =
−=

p

i ii abU
1

)(; U* denotes the total amount
of idle time in an optimal schedule;

3. JA(i,j): denote the jth job assigned on machine Mi by
algorithm A;

4. s(A,JA(i,j)): denote the starting time of job JA(i,j) assigned
by algorithm A;

5. li: the number of jobs assigned on machine Mi by
algorithm LS;

6. Bi(i=1,…,m): Bi={JLS(i,j)|S(LS, JLS(i,j))<b<S(LS,
JLS(i,j))+pLS(i,j)},i.e., the job JLS(i,j) in Bi is assigned to start before
b and finish after b on machine Mi by the LS algorithm. It is
obvious that |Bi|≤1 holds;

International Conference on Computer Information Systems and Industrial Applications (CISIA 2015)

© 2015. The authors - Published by Atlantis Press 569

7. Δi (i=1,…,m) and Δ: Δ=max{Δ1,…, Δm}, where if Bi=∅,
then Δi=0 and if Bi≠∅ then Δi=min{S(LS, JLS(i,j)})+ pLS(i,j)-b,
S(LS, JLS(i,j))- rLS(i,j)| JLS(i,j)∈Bi }

 for (i=1,…,m).

8. A
ijΔ : denote the amount of idle time between (j-1)th job

and jth job assigned on machine Mi by algorithm A, i.e.

()()
()() ()() ()()

1 ,1

, , 1 , 1

, ;

, , . 2 , 1, 2 , , .

A
i A i

A
ij A i j A i j A i j

s A J

s A J s A J p j i m− −

Δ =

Δ = − + ≥ = L

III. MAIN CONCLUSION AND ITS PROOF
Theorem 1 For any job list L={J1,J2,...,Jn}, we have:

()
() mLC
LC

OPT

LS

3
1

2
3

max

max −≤
 (1)

Proof: If (1) is not true, then there exist job list L(called
counter example)satisfying

()
().3

1
2
3

max

max

LC
LC

m OPT

LS

<−

We suppose that L={J1,J2,...,Jn} is such a counter example
that the number of jobs in L is least among all of the counter
examples in the following discussion. We refer to a job list
with the least number of jobs as minimal counter example. Let
Li denote the completion time of machine Mi just before Jn is
assigned. Reorder the machines such that L1≤L2≤…≤Lm holds.
Then it is easy to see that () n

LS pLLC += 1max holds by the
minimality of job list L.

Case 1: There is no idle interval in the LS schedule.

In this case it is obvious that ∑∑
==

=+
n

i
in

m

i
i pPL

11

 holds.

Hence we have

()
()

()
()

()

()

()
()

()
.

1
1

1

2
1

2
3

max

max

1

max

1

max

1

max

max

LmC
pm

LmC

pmp

LmC

mpL

LmC
pLm

LC
LC

m

OPT
n

OPT

n

n

i
i

OPT

n

m

i
i

OPT
n

OPT

LS

−
+≤

−+
=

+
≤

+
=<−

∑∑
==

Thus we get

()LCp OPT
n max2 > (2)

That means there is at most one job on each machine in
any optimal schedule. Hence it is easy to get that the
makespan of the LS algorithm is equal the makespan of any
optimal algorithm. This is a contradiction.

Case 2: There is at least idle interval in the LS schedule.

By the definition of Δi, for any algorithm ρ, on each
machine Mi the total amount of job processing time that is
scheduled after time bT in the LS schedule and can be moved
forward before bT to be processed by other algorithm is at most
Δi.

Hence we have

*

1
UU

m

i
i ≤Δ− ∑

=
Without loss of generality, we assume that machine Mr(1≤

r≤ m) is idle in the interval (a,b) in the LS schedule. Hence we
get：

.)1(,0,
,11
∑∑

≠==

Δ−≤Δ=Δ=ΔΦ=
m

rii
i

m

i
irr mB

By the definition of (a,b), there exists job

Jx(1≤x≤n)satisfying rx=S(LS,Jx)=b and Jx is assigned on
machine Mr by the LS algorithm. By p1≥ p2≥…≥ pn we have

() nXX
OPT pbprLC +≥+≥max (3)

By)(max
*

1
LmCUp OPT

n

i
i ≤+∑

=

, we get

()
()

()
()

())(

)1(

2
1

2
3

max

1

max

1

max

1

max

max

LmC

pmUp

LmC

mpL

LmC
pLm

LC
LC

m

OPT

n

i
ni

OPT

n

m

i
i

OPT
n

OPT

LS

∑∑
==

−++
=

+
≤

+
=<−

()

()

()
()()

()

1 1

1 1 1

max m ax

m ax

1

1
1

n m m

i i i n
i i i

OPT OPT

n
OPT

p U m p

m C L mC L

m p
mC L

− −

= = =

+ − Δ Δ + −
= +

− Δ +
≤ +

∑ ∑ ∑

Thus we get

() ()LCp OPT
n max2 >+Δ (4)

If Δ=0, then we have eqn (2) holds. By the similar way
used in Case 1 we can conclude () ()LCLC LSOPT

maxmax = holds.
This is a contradiction. If Δ>0, we suppose that Ms satisfies:

{ }),(KSLSS JB =

 (5)
()() () ()() (){ }ksLSksLSksLSksLSs rJLSSbpJLSS ,,,, ,,,min −−+=Δ=Δ

By the rules of LS algorithm we have:

() () (){ } { }mmLSLSLS JJJJJJ ,,,,,, 211,1,21,1 LL = (6)

() ()()()miJLSsr iLSiLS ,,2,1, 1,1, L==
 (7)

Lemma 1 If 0≥Δ holds and Jt satisfies
bpJLSS tt ≤+),((i.e., job Jt is finished before b), then

tkSLS pP ≤),(
holds，where s and k are defined by eqn (5).

Proof: Suppose
tkSLS pP >),(
and Jt is assigned on Mq．By

tkSLS pP >),(
we can get tkSLS rr ≤),(.

By the rules of LS algorithm, it is easy to see the following

inequality holds: ()() ()tksLS JLSSJLSS ,, , ≤ ,
()() () bpJLSS ksLSksLS −+≤Δ ,,,Q , we have

()

.
),(

),(),(,

Δ+≥Δ+≥
Δ+−≥

Δ+−≥

nt

t

ksLSksLS

pp
JLSSb

JLSSbp

570

By
{ ,),(min),(),(bpJLSS ksLSksLS −+=Δ

()() } 0,),(, >− ksLSksLS rJLSS , we have

() ()()ksLSksLS JLSSr ,, ,< That means 2≥k ，By our
assumption, we have

() () ()mippp iLSKsLSn ,,2,11,, L=≤≤+Δ
In any optimal schedule ， at least two job from
() () ()},,,{ ,1,1,1 ksLSmLSLS JJJ L are assigned on a machine

together．Thus we get

() () () ()nksLS
OPT

n ppLCp +Δ≥≥>+Δ 222 ,max ,

This is contradiction.

For any t, if () bpJLSS tt ≤+, holds, then by Lemma 1

and ()() () ()ksLSksLSksLS pbpJLSS ,,,, <−+≤Δ , we have,

Δ≥tp (8)
Corollary 1.1 If 0>Δ , then there are at most two jobs

which are finished before b on any machine.

Corollary 1.2 If there are two machines iM ,
tM),1(mti ≤≤ satisfying

)1,()1,()2,()2,(),(,(iLSiLStLStLS pJLSrpJLSS +≤+ ,

then Mi can not finish any job other than ()1,iLSJ before b in
the LS schedule.

Lemma 2 In the LS schedule, reorder M1, M2,…,Mm such
that the following inequalities hold:

rLS(1,1)+pLS(1,1)≤rLS(2,1)+pLS(2,1) ≤ …≤ rLS(m,1) +pLS(m,1).

I. If {JLS(1,1),…,JLS(m,1),JLS(1,2),…,JLS(m,2)}={J1,…,J2m}, then
we have () *

1
21 U

m

i
ii ≤Δ+Δ∑

=

II. If {JLS(1,1),…,JLS(m,1),JLS(1,2),…,JLS(m,2)}≠{J1,…,J2m} then
there exists w(1<w≤m) satisfying

.*
1

1
2

1
1 U

i
i

m

i
i ≤Δ+Δ ∑∑

−

==

ω .

Proof: Please refer to the full paper. �

Now we will finish the proof of Case 2 of Theorem 1
according to the following two subcases:

Case2.1.
() () () (){ } { }mmLSLSmLSLS JJJJJJJ 2212,2,11,1,1 ,,,,,;,, LLL = .

In this case let

∑
=

Δ=Δ
il

i

LS
iji

3

* , ,,,2,1 mi L= (9)

where li denotes the number of jobs assigned on machine
Mi in the LS scedule. By Lemma 2 we have

() *

1
21 U

m

i

LS
i

LS
i ≤Δ+Δ∑

=

. By Corollary 1.1 we get

miLS
ii L,2,1,3

* =Δ=Δ (10)

() ()∑ ∑∑
= ==

Δ+Δ+Δ=Δ+Δ+Δ=
m

i

m

i

LS
i

LS
i

LS
i

m

i

LS
i

LS
i

LS
iU

1 1
321

1
321

 (11)
Let s and k satisfy eqn (5). By the proof of Lemma 1 we

know k≥ 2 . By the definition of Δ we have

()() () ()() () .0,;0, ,,,, >−+>− bpJLSSrJLSS ksLSksLSksLSksLS
By the definition of A

ijΔ ,

()() ()() ()1,1,, ,, −− += ksLSksLSksLS pJLSSJLSS is obvious.
Thus we get

0=ΔLS
sk . (12)

If machine Ms just finishes job JLS(s,1) before b, then k=2.

()() () () 020, 3
*

,, =Δ=Δ∴≥=Δ∴>+ LS
ss

LS
stksLSksLS tbpJLSSQ

If machine Ms has finished two jobs JLS(s,1) and JLS(s,2) before
b, then k=3. By eqn (10) and eqn (12) we have

03 =Δ=Δ∗ LS
ss .

Thus ∑∑∑
≠=≠==

Δ=Δ=Δ
m

sii

LS
i

m

sii
i

m

i
i

,1
3

,1

*

1

* . By (11) we get

() () .
1

,1

*

1
21

1
321 ∑∑∑

−

≠===

Δ+Δ+Δ=Δ+Δ+Δ=
m

sii
i

m

i

LS
i

LS
i

m

i

LS
i

LS
i

LS
iU

Let { }**
2

*
1

* ,,,max mΔΔΔ=Δ L , then

()
() ()

()
()

()
()

()

()
()()

()LmC
pm

LmC

pm

LmC

p

LmC
pm

LmC

Up

LC
LC

m

OPT
n

OPT

n

m

sii
i

OPT

m

i

LS
i

LS
i

n

i
i

OPT
n

OPT

n

i
i

OPT

LS

max

*
max

1

,1

max

1
21

1

maxmax

1

max

max

1
1

1

1
2

1
2
3

+Δ−
+≤

−+Δ
+

Δ+Δ+
=

−
+

+
≤<−

∑∑∑

∑

−

≠=

∗

==

=

Therefore () ()LCp OPT
n max

*2 >+Δ . By eqn (4) we can get

{ } ()LCp OPT
n max

* 2,min2 >+ΔΔ (13)
(1) If Δ*=0 , then by the proof of Case 1 we have

() ()LCLC LSOPT
maxmax = . This is a contradiction.

(2) Δ*>0, suppose machine M u(u∈{1,2,…, m.}). satisfies:

LS
uu 3

** Δ=Δ=Δ (14)
Mu has finished two jobs JLS(u,1), JLS(u,2) before b. By eqn (8),
pLS(u,1)≥ pLS(u,2) > Δ holds. Thus

()
{ } .2,min2 **

*
)2,()1,(max

nnn

nuLSuLSn
OPT

ppp

ppppbLC

+ΔΔ≥++Δ+Δ>

+Δ++≥+≥
This

contradicts to eqn (13).
Case 2.2.

() () () (){ } { }mmLSLSmLSLS JJJJJJJ 2212,2,11,1,1 ,,,,,;,, LLL ≠

In this case we firstly reorder machines M1,M2,…,Mm such that

571

rLS(1,1) +pLS(1,1)≤…≤ rLS(m,1)+pLS(m,1). Then we can prove this case
similarly as Case 2.1.

ACKNOWLEDGMENT
This work is supported by the Chinese National Natural

Science Foundation Grant(No.11471110), Project supported
by the Science and Technology Department of Hunan
Province(2012GK3122)，and the Scientific Research Fund of
Hunan Provincial Education Department(12C0198).

REFERENCES
[1] Cheng T.C.E., Kellerer H., Kotov V., Algorithms better than LPT for

semi-online scheduling with decreasing processing times[J]. Operations
Research Letters, Vol.40: pp349-352. 2012,

[2] Graham RL, Bounds on multiprocessing timing anomalies. SIAM J Appl.
Math,Vol.17: pp416-429, 1969.

[3] Li R, Huang HC, On-line scheduling for jobs with arbitrary release times.
Computing ,Vol.73: pp79-97, 2004.

[4] Li, R., Yang,L., He,X., Chen,Q., Cheng,X., Semi-online scheduling for
jobs with release times, Journal of Combinatorial
Optimization,Vol.26(3), pp448-464, 2013.

[5] Liu W. P., Sidney J. B., Vliet A., Ordinal algorithm for parallel machine
scheduling. Operations Research Letters. Vol.18, pp223-232, 1996.

[6] Seiden S., Sgall J., Woeginger G., Semi-online scheduling with
decreasing job sizes[J]. Operations Research Letters, Vol.27: pp215-222,
2000.

572

