International Conference on Computer Information Systems and Industrial Applications (CISIA 2015)

LS Algorithm for Semi-online Scheduling Jobs with
Nondecreasing Release Times and Nondecreasing
Processing Times

F. Tang

School. of Industry
Hunan Normal University
Changsha 410081, China

Abstract—In this paper, semi-online scheduling jobs with non-
decreasing release times and non-increasing processing times on
m identical parallel machines is considered. The aim is to
minimize the last completion time of all machines. It is proved
that, for any m identical parallel machines, 3/2-1/2m is an upper
bound of the worst case performance ratio of List Scheduling(LS)
algorithm.

Keywords-release time;
algorithm

processing time; semi-online; LS

I. INTRODUCTION

The problem of scheduling jobs on identical parallel
machines is an important part of combinatorial optimization
problem. It is defined as follows: Given a job set L =
{J1,J2,...dn} of n jobs where job Ji has non-negative
processing time pi, partition the job set into m subsets so as to
minimize the maximum sum of processing times of the jobs in
each subset.

A scheduling problem is called off line if we have complete
information about the job data before constructing a schedule.
In contrast, the scheduling problem is called online if the jobs
appear one by one and it requires scheduling of the arriving job
irrevocably on a machine without knowledge of the future jobs.
The processing time of next job becomes available only after
the current job is scheduled. The worst case performance ratio
of an algorithm A is defined as:

R(m,A):suLp gom:‘ﬁi((ll'_))

max

where Cruc (L) and Cra (L) are the maximum completi

pletion
times of algorithm A and the optimal off-line algorithm
respectively. Graham (1996) proposed the List Scheduling (LS)
algorithm to minimize the maximum completion time for
online scheduling of n jobs on m identical parallel machines.
The LS algorithm always assign the current job to the machine
that will complete it first.

In the Graham's classical on-line scheduling problem on m

identical machines, all jobs are released at time zero one by one.

Li and Huang(2004) generalized Graham's problem by assume
that each job has a release time. A job Jj is informed of a 2-
tuple (rj,pj), where rj and pj represent the release time and the
processing time of the job Jj, respectively. This problem can be
referred to as generalized on-line scheduling problem or on-line
scheduling problem for jobs with arbitrary release times or

© 2015. The authors - Published by Atlantis Press

J. Nie

Dept. of Math
Hunan Normal University
Changsha 410081, China
orders on-line scheduling problem. Li & Huang showed that 3-
1/mis the worst case performance ratio of the LS algorithm.

Liu et al. proposed semi-online schedule in 1996. Seiden et
al. considered semi-online scheduling problem for jobs with
release time zero and non-increasing processing times in 2000.
They firstly showed that algorithm LS has worst case
performance ratio 4/3-1/3m. When m=2, they proved that LS
algorithm is the best. Later Cheng et al.(2012) proved that LS
algorithm is also optimal for m=3 and they also proposed an
algorithm with worst case performance 5/4 for m < 4.

Li et al(2013) considered semi-online scheduling on m
machines for jobs with non-decreasing release times and non-
increasing processing times. They point out that it is easy to
show that 3/2-1/2m is the upper bound of the worst case ratio
of LS algorithm. But in fact the result is not so obvious. In this
paper we give a new and full proof.

Il. SymBoLS
For job list L={J1,J5,...,Jn}, we always use r; and p; to

denote the release time and processing time of job
Ji(=1,2,...,n) and assume they satisfy the following
inequalities:

N<r<... <, P Po> ... P

Now we define some symbols as follows:

1. Idle interval (a,b): Let (a,by),...,(ar,by) are all of the
idle intervals of job list L in the LS schedule. (a,b) is one of
the T idle intervals satisfying b=max< pbi;

. P .

2.U, U U = Zi:l(bi —a,); U* denotes the total amount

of idle time in an optimal schedule;

3. JA(i,j):
algorithm A;

denote the jth job assigned on machine M; by

4. 5(A,Jagj): denote the starting time of job Jag ;) assigned
by algorithm A;

5. I;: the number of jobs assigned on machine M; by
algorithm LS;

6. Bi(i:1,...,m): Bi:{JLs(iJ)|S(LS, JLs(i'j))<b<S(LS,
Jisiij)FPusij}-i-€., the job Jisgj) in Bjis assigned to start before
b and finish after b on machine M; by the LS algorithm. It is
obvious that |B;|<1 holds;

7. Ai(i=1,...,m) and A: A=max{Ay,..., An}, Where if Bi=J,
then A=0 and if B#J then Ai:min{S(LS, JLS(i,j)})"' pLS(i,j)'bv
S(LS, Jisgi)- rusiil dusijeBi}

for (i=1,...,m).

8. Af} : denote the amount of idle time between (j-1)th job
and jth job assigned on machine M; by algorithm A, i.e.

(A! JA(i,l));

Al =s

Al = S(A,JAO‘J))—(S(A,JAO‘H))+ pA(,_H)). 22, i=1,2,.,m.
I11. MAIN CONCLUSION AND ITS PROOF
Theorem 1 For any job list L={J;,J5,...,Jn}, We have:
CroL) 3 1
OPT -
CoT(L)" 2 3m 0

Proof: If (1) is not true, then there exist job list L(called
counter example)satisfying

3 1 _Cun
2 3m C&T(L)

We suppose that L={J;,J5,...,Jn} is such a counter example
that the number of jobs in L is least among all of the counter
examples in the following discussion. We refer to a job list
with the least number of jobs as minimal counter example. Let
L; denote the completion time of machine M; just before J, is

assigned. Reorder the machines such that Li<L,<...<L, holds.
Then it is easy to see that C= (L)=L, + p, holds by the
minimality of job list L.

(L)

Case 1: There is no idle interval in the LS schedule.

In this case it is obvious thath:Li +P :Zn: P, holds.

i=1 i=1

Hence we have

3.1 _Cc5) m+p,)
2 2m cy (L) mC (L)
ZLi+mp,1 Zpi+(m—1)pn
< ==
mc &7 (L) mC oo (L)
<14 (m-1)p,
= mC OPT (L)
Thus we get
2p,>Col (L)

3]

That means there is at most one job on each machine in
any optimal schedule. Hence it is easy to get that the
makespan of the LS algorithm is equal the makespan of any
optimal algorithm. This is a contradiction.

Case 2: There is at least idle interval in the LS schedule.

By the definition of A;, for any algorithm p, on each
machine M; the total amount of job processing time that is
scheduled after time by in the LS schedule and can be moved
forward before by to be processed by other algorithm is at most
Ai.

570

Hence we have

U—Zm:AisU‘

Without loss of generalit);, we assume that machine M, (1<
r<m) is idle in the interval (a,b) in the LS schedule. Hence we
get:

B, =®, A, =0, Zm:Ai:zm:Ais(m—l)A.
i=1 i=lji=r
By the definition of (ab), there exists job

Jy(1=<x<n)satisfying r=S(LS,J,)=b and J, is assigned on
machine M; by the LS algorithm. By p;>p,2>...> p, we have

COT (L)2r, + py 2b+ p,

max (3)
BYS' p,+U " <mC % (L) Weget
i=1
3. 1 _Cm (@) _m,+p,)
2 2m cZ (L) mc (L)
Zm:L.+mpn Zn: p;+U +(m-1)p,
R (B B (Y
Z p, +U —mzlAi mzlA-ﬁ-(m—l) P,
_ =1 i=1 i=
T merT (L) meT (D)
1o m-D(a+p,)
= mCoi (L)
Thus we get
2(a+p,)>C il (L) (4)

If A=0, then we have egn (2) holds. By the similar way
used in Case 1 we can conclude Co7T (L)=C~ (L) holds.

max max
This is a contradiction. If A>0, we suppose that M; satisfies:

Bs = }l‘] LS(S,K)})
A=A = min{S(LS, JLs(s,k))+ Pis(si) —b,S(LS, ‘]LS(s,k))_ rLS(s,k)}
By the rules of LS algorithm we have:
{JLS(l,l)vJLS(zyl), JLSml} {Jl’JZ’ ..,Jm}
sy = S(LS J LS(i,1)X| =12, m)

Lemma 1 If A >0 holds and Jt satisfies
S(LS,J,)+ p, <b(i.e., jobJtis finished before b), then

< p, holds, Where s and k are defined by egn (5).

(6)
U]

LS(S k)

Proof: Suppose p and Jt is assigned on Mqg. By

Lses.k) > Pe
Pisisi > ptwe can get Misisi S Sh-

By the rules of LS algorithm, it is easy to see the following
inequality holds: (LS, LS(S*))S s(Ls, ‘]‘),

" A< S(LS, Jysies))+ Pusier) = b we have

Pisiy2h —S(LS I 5)+ A
b-S(LS,J,)+ A
p,+A=2p, +A.

>

\

By
A =min{S(LS, I gs0) + Prssr —bs
S(st J LS(s,k))_) }> 0, we have
Fisgox) < S(LS,J 54)) Thatmeans k > 2., By our
assumption, we have

<

A+p, < pLS(s,K) < pLs(i,l)(i 21’21""m)
In any optimal schedule , at least two job from
{‘] Ls(a)r " 7y ‘]LS(m,l)' ‘]Ls(s,k)}

together. Thus we get
Z(A + Pa) > Cr(T:l):I (L)2 2 pLS(s,k) 2 Z(A + pn)

are assigned on a machine

This is contradiction.

For any t, if S(LS, J,)+ P, < bholds, then by Lemma 1

and A< S(LS, ‘]LS(s,k))+ Pisisi) —D < Pisisi _Wwe have,
>
p,2A (8)

Corollary 1.1 1fA > 0, then there are at most two jobs
which are finished before b on any machine.

Corollary 1.2 |If there are two machines M ,
MiL<its M) satisfying

S(LS, I sz + Pisazy ST(LS, I si) + Pusin

then M; can not finish any job other than Jus6) pefore b in

the LS schedule.

Lemma 2 In the LS schedule, reorder My, M,,...,M;, such
that the following inequalities hold:
s,y tPLsenSriseytPsey S < Fism,1) TPLsm,L)-
Lo1f Lisaay- - Jismydisazy - Jdismat={I-...Jam}, then
we have Zm:(Ail +A;,) <u”
i=1

I sy Jdismydisae--Jism2yz{ - Jan} then
there exists w(l<w<m) satisfying Z AL+ EIA LUt
i=1 i=1

Proof: Please refer to the full paper. (I

Now we will finish the proof of Case 2 of Theorem 1
according to the following two subcases:

Case2.1.

{‘JLS(LI)"”"JLS(m,l);‘]LS(l,Z)””"]LS(m,Z)}: {‘]11 ‘]2”" J

1Y 2m

.

In this case let

- (©)

3t At =12, ,m,
ij

i=3

571

where [; denotes the number of jobs assigned on machine

M; in the LS scedule. By Lemma 2 we have

m
(Aff +A)S U”. By Corollary 1.1 we get
i=1

All_g,i :1'2’...m

m m
U= (A% +a%+a%)=3 (a%

i=1 i=1

A = (10)

FA)Y AL
i=1

(11)
Let s and k satisfy eqn (5). By the proof of Lemma 1 we
know k> 2 . By the definition of A we have

S(LS| ‘]LS(s,k))_ Missn) > 0 S(LS| JLS(s,k))+ Piss) —D>0.
By the A?j :
S(st J LS(s,k)): S(LS’ J LS(s,k—l))+ Pis(sky) IS Obvious.
Thus we get

ALS — 0
sk . (12)
If machine M; just finishes job J g1y before b, then k=2.
2w S(LS, Jisiep)+ Prserg >0 AR =0(t22) AL =AY =0

definition of

If machine M; has finished two jobs Ji g1y and Jig2) before
b, then k=3. By egn (10) and egn (12) we have
* LS
A, =A; =0.
= Zm: A*i
i=1l,i#s

U =3 (A% +a% +a%)=> (a% +a%)+ X At

Thus Zm: A

i=1

_ Zm: Al - By (11) we get
i=l,i#s

Let A" = max {A*er*zr . YA*m },then
31 e 5" -,
2 In e) me) me @ 1)

S o0 Gt ean) Eaieom-ne,

A () e ()

RN GIEES (SEN'Y)|

- mc 2 (L)
Therefore 2(A* + pn)> C2T(L). By eqn (4) we can get

2min {A, A" }+2p, > COT (L) (13)

(1) If A*=0 , then by the proof of Case 1 we have
Co¥T(L)=CL (L)- This is a contradiction.

max “max

(2) A*>0, suppose machine M y(ue{1,2,..., m.}). satisfies:
AN =A, =A5 (14)
M, has finished two jobs Jisq 1), Jiswz2) before b. By eqn (8),

PLswn> Pusw2) > A holds. Thus
Cr(r?:xT (I-)2 b+ p, 2> Piswy * Pisway t+A + P,

>A+ A"+ p,+ p,>=2min {A,A*}+2pn. This
contradicts to egn (13).
Case 2.2.
{‘] Ls (1,1) """ "]LS (m‘l);‘]LS @2) """ "JLS (m,z)}i {Jiszr"' "sz}

In this case we firstly reorder machines M;,M,,...,M;, such that

sy FPLsnS. - < Fismuy+Pusmy. Then we can prove this case
similarly as Case 2.1.

ACKNOWLEDGMENT

This work is supported by the Chinese National Natural
Science Foundation Grant(No.11471110), Project supported
by the Science and Technology Department of Hunan
Province(2012GK3122), and the Scientific Research Fund of
Hunan Provincial Education Department(12C0198).

[

[
31
[41

[5]
[6]

REFERENCES

Cheng T.C.E., Kellerer H., Kotov V., Algorithms better than LPT for
semi-online scheduling with decreasing processing times[J]. Operations
Research Letters, VVol.40: pp349-352. 2012,

Graham RL, Bounds on multiprocessing timing anomalies. SIAM J Appl.

Math,Vol.17: pp416-429, 1969.

Li R, Huang HC, On-line scheduling for jobs with arbitrary release times.

Computing ,Vol.73: pp79-97, 2004.

Li, R., Yang,L., He,X., Chen,Q., Cheng,X., Semi-online scheduling for
jobs with release times, Journal of Combinatorial
Optimization,VVol.26(3), pp448-464, 2013.

Liu W. P., Sidney J. B., Vliet A., Ordinal algorithm for parallel machine
scheduling. Operations Research Letters. \Vol.18, pp223-232, 1996.
Seiden S., Sgall J., Woeginger G., Semi-online scheduling with
decreasing job sizes[J]. Operations Research Letters, Vol.27: pp215-222,
2000.

572

