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Abstract—In this paper, semi-online scheduling jobs with non-
decreasing release times and non-increasing processing times on 
m identical parallel machines is considered. The aim is to 
minimize the last completion time of all machines. It is proved 
that, for any m identical parallel machines, 3/2-1/2m is an upper 
bound of the worst case performance ratio of List Scheduling(LS) 
algorithm. 
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I. INTRODUCTION 
The problem of scheduling jobs on identical parallel 

machines is an important part of combinatorial optimization 
problem. It is defined as follows: Given a job set L = 
{J1,J2,...,Jn} of n jobs where job Ji has non-negative 
processing time pi, partition the job set into m subsets so as to 
minimize the maximum sum of processing times of the jobs in 
each subset. 

A scheduling problem is called off line if we have complete 
information about the job data before constructing a schedule. 
In contrast, the scheduling problem is called online if the jobs 
appear one by one and it requires scheduling of the arriving job 
irrevocably on a machine without knowledge of the future jobs. 
The processing time of next job becomes available only after 
the current job is scheduled. The worst case performance ratio 
of an algorithm A is defined as: 
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AmR OPT
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where )(max LC A
 and )(max LCOPT

 are the maximum completion 
times of algorithm A and the optimal off-line algorithm 
respectively. Graham (1996) proposed the List Scheduling (LS) 
algorithm to minimize the maximum completion time for 
online scheduling of n jobs on m identical parallel machines. 
The LS algorithm always assign the current job to the machine 
that will complete it first. 

In the Graham's classical on-line scheduling problem on m 
identical machines, all jobs are released at time zero one by one. 
Li and Huang(2004) generalized Graham's problem by assume 
that each job has a release time. A job Jj is informed of a 2-
tuple (rj,pj), where rj and pj represent the release time and the 
processing time of the job Jj, respectively. This problem can be 
referred to as generalized on-line scheduling problem or on-line 
scheduling problem for jobs with arbitrary release times or 

orders on-line scheduling problem. Li & Huang showed that 3-
1/m is the worst case performance ratio of the LS algorithm. 

 Liu et al. proposed semi-online schedule in 1996. Seiden et 
al. considered semi-online scheduling problem for jobs with 
release time zero and non-increasing processing times in 2000. 
They firstly showed that algorithm LS has worst case 
performance ratio 4/3-1/3m. When m=2, they proved that LS 
algorithm is the best.  Later Cheng et al.(2012) proved that LS 
algorithm is also optimal for m=3 and they also proposed an 
algorithm with worst case performance 5/4 for m ≤ 4.  

Li et al(2013) considered semi-online scheduling on m 
machines for jobs with non-decreasing release times and non-
increasing processing times. They point out that it is easy to 
show that 3/2-1/2m is the upper bound of the worst case ratio 
of LS algorithm. But in fact the result is not so obvious. In this 
paper we give a new and full proof. 

II. SYMBOLS 
For job list L={J1,J2,...,Jn}, we always use rj and pj to 

denote the release time and processing time of job 
Jj(j=1,2,…,n) and assume they satisfy the following 
inequalities: 

r1≤r2≤… ≤ rn,    p1≥ p2≥ …≥ pn. 
Now we define some symbols as follows： 

1. Idle interval (a,b): Let (a1,b1),…,(aT,bT) are all of the 
idle intervals of job list L in the LS schedule. (a,b) is one of 
the T idle intervals satisfying b=max1≤i≤ pbi; 

2. U, U*: ∑ =
−=

p

i ii abU
1

)( ; U* denotes the total amount 
of idle time in an optimal schedule; 

3. JA(i,j):  denote the jth job assigned on machine Mi by 
algorithm A; 

4. s(A,JA(i,j)): denote the starting time of job JA(i,j) assigned 
by algorithm A; 

5. li: the number of jobs assigned on machine Mi by 
algorithm LS; 

6. Bi(i=1,…,m): Bi={JLS(i,j)|S(LS, JLS(i,j))<b<S(LS, 
JLS(i,j))+pLS(i,j)},i.e., the job JLS(i,j) in Bi is assigned to start before 
b and finish after b on machine Mi by the LS algorithm. It is 
obvious that |Bi|≤1 holds; 

International Conference on Computer Information Systems and Industrial Applications (CISIA 2015) 

© 2015. The authors - Published by Atlantis Press 569



 

7. Δi (i=1,…,m) and Δ: Δ=max{Δ1,…, Δm}, where if Bi=∅, 
then Δi=0 and if Bi≠∅ then Δi=min{S(LS, JLS(i,j)})+ pLS(i,j)-b, 
S(LS, JLS(i,j))- rLS(i,j)| JLS(i,j)∈Bi } 

  for (i=1,…,m). 

8. A
ijΔ : denote the amount of idle time between (j-1)th job 

and jth job assigned on machine Mi by algorithm A, i.e. 
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III. MAIN CONCLUSION AND ITS PROOF 
Theorem 1 For any job list L={J1,J2,...,Jn}, we have: 
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Proof: If (1) is not true, then there exist job list L(called 
counter example)satisfying 
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We suppose that L={J1,J2,...,Jn} is such a counter example 
that the number of jobs in L is least among all of the counter 
examples in the following discussion. We refer to a job list 
with the least number of jobs as minimal counter example. Let 
Li denote the completion time of machine Mi just before Jn is 
assigned. Reorder the machines such that L1≤L2≤…≤Lm holds. 
Then it is easy to see that ( ) n

LS pLLC += 1max  holds by the 
minimality of job list L. 

Case 1: There is no idle interval in the LS schedule. 

In this case it is obvious that ∑∑
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  holds. 

Hence we have 
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Thus we get  

( )LCp OPT
n max2 >                      (2) 

That means there is at most one job on each machine in 
any optimal schedule. Hence it is easy to get that the 
makespan of the LS algorithm is equal the makespan of any 
optimal algorithm. This is a contradiction.  

Case 2: There is at least idle interval in the LS schedule. 

By the definition of Δi, for any algorithm ρ, on each 
machine Mi the total amount of job processing time that is 
scheduled after time bT in the LS schedule and can be moved 
forward before bT to be processed by other algorithm is at most 
Δi. 

Hence we have 
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Without loss of generality, we assume that machine Mr(1≤ 

r≤ m) is idle in the interval (a,b) in the LS schedule. Hence we 
get： 
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By the definition of (a,b), there exists job 

Jx(1≤x≤n)satisfying rx=S(LS,Jx)=b and Jx is assigned on 
machine Mr by the LS algorithm. By p1≥ p2≥…≥ pn we have 
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Thus we get 

( ) ( )LCp OPT
n max2 >+Δ                     (4) 

If Δ=0, then we have eqn (2) holds. By the similar way 
used in Case 1 we can conclude  ( ) ( )LCLC LSOPT

maxmax =  holds. 
This is a contradiction. If Δ>0, we suppose that Ms satisfies: 

        
{ }),( KSLSS JB =

                                 (5) 
( )( ) ( ) ( )( ) ( ){ }ksLSksLSksLSksLSs rJLSSbpJLSS ,,,, ,,,min −−+=Δ=Δ  

By the rules of LS algorithm we have:  

( ) ( ) ( ){ } { }mmLSLSLS JJJJJJ ,,,,,, 211,1,21,1 LL =      (6) 

( ) ( )( )( )miJLSsr iLSiLS ,,2,1, 1,1, L==
            (7) 

Lemma 1 If 0≥Δ  holds and Jt satisfies 
bpJLSS tt ≤+),( (i.e., job Jt is finished before b), then 

tkSLS pP ≤),(
holds，where s and k are defined by eqn (5). 

Proof: Suppose
tkSLS pP >),(
and Jt  is assigned on Mq．By 

tkSLS pP >),(
we can get tkSLS rr ≤),( . 

By the rules of LS algorithm, it is easy to see the following 

inequality holds: ( )( ) ( )tksLS JLSSJLSS ,, , ≤ , 
( )( ) ( ) bpJLSS ksLSksLS −+≤Δ ,,,Q , we have 
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By 
{ ,),(min ),(),( bpJLSS ksLSksLS −+=Δ

( )( ) } 0, ),(, >− ksLSksLS rJLSS , we have 

( ) ( )( )ksLSksLS JLSSr ,, ,< That means 2≥k ，By our 
assumption, we have  

( ) ( ) ( )mippp iLSKsLSn ,,2,11,, L=≤≤+Δ  
In any optimal schedule ， at least two job from 
( ) ( ) ( )},,,{ ,1,1,1 ksLSmLSLS JJJ L  are assigned on a machine 

together．Thus we get 
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This is contradiction. 

For any t, if ( ) bpJLSS tt ≤+, holds, then by Lemma 1 

and ( )( ) ( ) ( )ksLSksLSksLS pbpJLSS ,,,, <−+≤Δ , we have,  

Δ≥tp                                       (8) 
Corollary 1.1 If 0>Δ , then there are at most two jobs 

which are finished before b on any machine. 

Corollary 1.2 If there are two machines iM , 
tM ),1( mti ≤≤ satisfying 

)1,()1,()2,()2,( ),(,( iLSiLStLStLS pJLSrpJLSS +≤+ , 

then Mi can not finish any job other than ( )1,iLSJ  before b in 
the LS schedule. 

Lemma 2 In the LS schedule, reorder M1, M2,…,Mm such 
that the following inequalities hold: 

rLS(1,1)+pLS(1,1)≤rLS(2,1)+pLS(2,1) ≤ …≤ rLS(m,1) +pLS(m,1). 

I. If {JLS(1,1),…,JLS(m,1),JLS(1,2),…,JLS(m,2)}={J1,…,J2m}, then 
we have ( ) *
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II. If {JLS(1,1),…,JLS(m,1),JLS(1,2),…,JLS(m,2)}≠{J1,…,J2m} then 
there exists w(1<w≤m) satisfying 
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Proof: Please refer to the full paper. � 

Now we will finish the proof of Case 2 of Theorem 1 
according to the following two subcases: 

Case2.1.
( ) ( ) ( ) ( ){ } { }mmLSLSmLSLS JJJJJJJ 2212,2,11,1,1 ,,,,,;,, LLL = . 

In this case let 
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where li denotes the number of jobs assigned on machine 
Mi in the LS scedule. By Lemma 2 we have 
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Let s and k satisfy eqn (5). By the proof of Lemma 1 we 

know  k≥ 2 . By the definition of Δ we have 

( )( ) ( ) ( )( ) ( ) .0,;0, ,,,, >−+>− bpJLSSrJLSS ksLSksLSksLSksLS  
By the definition of A

ijΔ , 

( )( ) ( )( ) ( )1,1,, ,, −− += ksLSksLSksLS pJLSSJLSS  is obvious. 
Thus we get  

0=ΔLS
sk .                                      (12) 

If machine Ms just finishes job JLS(s,1) before b, then k=2. 
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If machine Ms has finished two jobs JLS(s,1) and JLS(s,2) before 
b, then k=3. By eqn (10) and eqn (12) we have 
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Therefore ( ) ( )LCp OPT
n max

*2 >+Δ . By eqn (4) we can get 

{ } ( )LCp OPT
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* 2,min2 >+ΔΔ           (13) 
(1) If Δ*=0 , then by the proof of Case 1 we have 

( ) ( )LCLC LSOPT
maxmax = . This is a contradiction. 

 
(2) Δ*>0, suppose machine M u(u∈{1,2,…, m.}). satisfies: 

LS
uu 3

** Δ=Δ=Δ                    (14) 
Mu has finished two jobs JLS(u,1), JLS(u,2) before b. By eqn (8),  
pLS(u,1)≥ pLS(u,2) > Δ holds. Thus 
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contradicts to eqn (13). 
Case 2.2. 

( ) ( ) ( ) ( ){ } { }mmLSLSmLSLS JJJJJJJ 2212,2,11,1,1 ,,,,,;,, LLL ≠

In this case we firstly reorder machines M1,M2,…,Mm such that 
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rLS(1,1) +pLS(1,1)≤…≤ rLS(m,1)+pLS(m,1). Then we can prove this case 
similarly as Case 2.1. 
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