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Abstract—This paper is concerned with the input-output-to-state 
stable (IOSS) controller design for switched Hopfield neural 
networks with disturbance input. We propose a new set of linear 
matrix inequality (LMI) conditions to ascertain that switched 
Hopfield neural networks are IOSS based on a quadratic positive 
semi-definite function. Switched Hopfield neural networks 
without disturbance input are also asymptotically stable under an 
additional set of LMI conditions. The proposed IOSS controller 
can be determined by solving a set of LMIs, which can be 
checked by using existing numerical algorithms. 
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I. INTRODUCTION 
Over the past few decades, many research results on neural 

networks have been reported in the literature because of their 
practical advantages, such as learning ability, classification, 
parallel computation, and function approximation. Interesting 
applications of neural networks are combinatorial optimization, 
nonlinear control, pattern recognition, and other many areas. 
The applications mainly depend on the stability and robustness 
of neural networks [1]. For this reason, the analysis of the 
stability and robustness for neural networks has been one of 
important research topics. On the other hand, switched 
dynamical systems often arise when systems have abrupt 
changes. Switched systems have been researched extensively in 
the literature during the past decades [2, 3, 4, 5]. Recently, 
switched Hopfield neural networks have been extensively 
researched in the field of gene selection and high-speed signal 
processing [6, 7]. Some new research results on learning, 
filtering, and stability for switched Hopfield neural networks 
have been presented in [8, 9, 10, 11, 12, 13]. 

The input-output-to-state stability (IOSS) concept [14, 15] 
is a significant method for investigating several properties of 
complex dynamical systems with disturbances. The IOSS 
concept can deal with complex dynamical systems using the 
input-output characteristic. Thus, many research results on the 
IOSS have been reported in recent years [14, 15, 16, 17]. Now, 
we have the following question: is there an IOSS based 
controller for switched Hopfield neural networks with 
disturbance input? This paper provides an answer to the 
question. For the IOSS based control for switched Hopfield 
neural networks with disturbance input, there have been no 
papers published in the literature. 

In this paper, we use the IOSS approach to obtain a new 
controller for switched Hopfield neural networks with 
disturbance input. This controller is called an input-output-to-

state stable (IOSS) controller. A new set of linear matrix 
inequality (LMI) based conditions for the IOSS controller is 
proposed such that switched Hopfield neural networks are 
asymptotically stable and IOSS for disturbance input. The gain 
matrix of the IOSS controller can be determined by solving a 
set of LMIs [18, 19]. 

II. IOSS CONTROL FOR SWITCHED HOPFIELD NEURAL 
NETWORKS 

Consider the following switched Hopfield neural network:  

( ) = ( ) ( ( )) ( ) ( ),x t A x t W x t u t G d tχ χ χθ+ + +&      (1) 

( ) = ( ) ( ),y t C x t D d tχ χ+                                         (2) 

where 1( ) = [ ( ) ... ( )]T n
nx t x t x t R∈  is the state vector, 

1( ) = [ ( ) ... ( )]T n
nu t u t u t R∈  is the control input, 

1( ) = [ ( ) ... ( )]T p
py t y t y t R∈

 is the output vector, 

1( ) = [ ( ) ... ( )]T k
kd t d t d t R∈  is the disturbance vector, χ  

is a switching signal which takes its values in the finite set 
= {1,2, , }NKI , N  is the number of Hopfield neural 

networks, 1, ,= { , , } n n
nA diag a a Rχ χ χ

×− − ∈K
 

,( > 0, = 1, , )ia i nχ K
 is the self-feedback matrix, 

n pW Rχ
×∈

 is the weight matrix, 

1( ) = [ ( ),..., ( )] :T n p
px x x R Rθ θ θ →

 is the nonlinear 

sigmoid function vector with the Lipschitz constant > 0Lθ , 

and 
p nC Rχ
×∈

, 
p kD Rχ
×∈

, 
n kG Rχ
×∈

 are known 
constant matrices. We assume that the instantaneous value of 
the switching signal χ  is available in real-time. Define 

1 2( ) = ( ( ), ( ), , ( ))T
Nt t t tξ ξ ξ ξK , where ( ) = 1i tξ  when the 

χ -th switched Hopfield neural network is selected and 
( ) = 0i tξ  otherwise. Based on the definition of ( )tξ , the 

switched Hopfield neural network (1)-(2) is represented by  

=1

( ) = ( )[ ( ) ( ( )) ( ) ( )],
N

i i i i
i

x t t A x t W x t u t G d tξ θ+ + +∑&            (3) 
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=1
( ) = ( )[ ( ) ( )],

N

i i i
i

y t t C x t D d tξ +∑                              (4) 

where ( )tξ  satisfies 
=1

( ) = 1N
ii

tξ∑ . 

Definition 1 [14, 15] A function 0 0: R Rγ ≥ ≥→  is a K  
function if it is continuous, strictly increasing and (0) = 0γ . 

It is a ∞K  function if it is a K  function and ( )sγ →∞  as 

s →∞ . A function 0 0 0: R R Rβ ≥ ≥ ≥× →  is a KL  function 
if, for each fixed 0t ≥ , the function ( , )tβ ⋅  is a K  function, 
and for each fixed 0s ≥ , the function ( , )sβ ⋅  is decreasing 
and ( , ) 0s tβ →  as t →∞ .  

The purpose of this paper is to design a new stabilization 
controller of the form ( ) = ( )u t Kx t  ( n nK R ×∈ ) such that 
the switched Hopfield neural network (3)-(4) satisfies  

1 2
0 0

( ) max{ ( (0) , ), ( ( ) ), ( ( ) )}sup sup
t t

x t x t d y
τ τ

β γ τ γ τ
≤ ≤ ≤ ≤

≤P P P P P P P P       (5) 

for ( ) 0d t ≠ , where ( )i sγ  ( = 1, 2i ) is a K  function and 
( , )s tβ  is a LK  function. 

A set of LMI conditions for the IOSS control of the 
switched Hopfield neural network (3)-(4) is proposed in the 
following theorem: 

Theorem 1  Assume that there exist common matrices 
= > 0TP P , 1 1= > 0TS S , 2 2= > 0TS S , 3 3= > 0TS S , 

and Y  such that  
2

2 2 3 0 < 0, = 1, 2,..., ,
0

T
i i i i i

T T T
i i i i i

T
i

PG C S D PW
G P D S C D S D S i N

W P I

⎡ ⎤Θ −
⎢ ⎥− − −⎢ ⎥
⎢ ⎥−⎣ ⎦

         (6) 

where 2
2 1= ( )T T

i i i i iPA Y PA Y L I C S C SφΘ + + + + − + . 
Then, the switched Hopfield neural network (3)-(4) is IOSS. 
The IOSS controller is given by 1( ) = ( )u t P Yx t− .  

Proof. We obtain the following closed-loop switched 
Hopfield neural network with the controller ( ) = ( )u t Kx t :  

=1
( ) = ( )[( ) ( ) ( ( )) ( )].

N

i i i i
i

x t t A K x t W x t G d tξ θ+ + +∑&          (7) 

Consider a positive semi-definite function: 
( ) = ( ) ( )TV t x t Px t , which satisfies the Rayleigh inequality 

[20]:  

1 2( ( ) ) ( ) ( ( ) ),x t V t x tα α≤ ≤P P P P                   (8) 

where 2
1 min( ) ( )r P rα λ@ , 2

2 max( ) ( )r P rα λ@ , and 

min ( )λ ⋅  and max ( )λ ⋅  are the maximum and minimum 

eigenvalues of the matrix. Note that 1( )rα  and 2 ( )rα  are 

∞K  functions. Using the Young’s inequality [20], ( )V t  
satisfies  

=1

( ) = ( ){ ( )[ ] ( ) ( ) ( ( ))
N

T T T T
i i i i

i

V t t x t A P K P PA PK x t x t PW x tξ θ+ + + +∑&  

( ( )) ( ) ( ) ( ) ( ) ( )}T T T T T
i i ix t W Px t x t PG d t d t G Px tθ+ + +  

2

=1
( ){ ( )[ ] ( )

N
T T T T

i i i i i
i

t x t A P K P PA PK L I PWW P x tφξ≤ + + + + +∑  

( ) ( ) ( ) ( )}.T T T
i ix t PG d t d t G Px t+ +           (9) 

Adding the zero equality 

2 =1
( ) ( ) ( )[ ( ) ( )]NT T

i i ii
y t S y t t C x t D d tξ− +∑  

2[ ( ) ( )] = 0i iS C x t D d t+  to (9), we obtain  

2

=1

( ) ( ){ ( )[
N

T T T T
i i i i i

i

V t t x t A P K P PA PK L I PWW Pφξ≤ + + + + +∑&  

2 2 2] ( ) ( ) ( ) ( )[ ] ( )T T T T T
i i i i i i iC S C x t d t D S D d t x t PG C S D d t− − + −

 

2 2( )[ ] ( ) ( ) ( )}T T T T
i i id t G P D S C x t y t S y t+ − +  

2

=1 2 2 3

( ) ( )(1,1)
= ( )

( ) ( )

T TN
i i i i

i T T T
i i i i i i

x t x tPG C S D
t

d t d tG P D S C D S D S
ξ

⎡ ⎤−⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦⎣ ⎦

∑

1 2 3( ) ( ) ( ) ( ) ( ) ( ),T T Tx t S x t y t S y t d t S d t− + +     (10) 
where 

2
2 1(1,1) = T T T T

i i i i i i iA P K P PA PK L I PWW P C S C Sφ+ + + + + − + . 

Define 
2

2 1= T T T
i i i i iA P K P PA PK L I C S C SφΨ + + + + − + . 

The following condition: 

2

2 2 3 0 < 0, = 1, 2,..., ,
0

T
i i i i i

T T T
i i i i i

T
i

PG C S D PW
G P D S C D S D S i N

W P I

⎡ ⎤Ψ −
⎢ ⎥− − −⎢ ⎥
⎢ ⎥−⎣ ⎦

        (11) 

which is equal to  

2

2 2 3

(1,1)
< 0, = 1,2,..., ,

T
i i i i

T T T
i i i i i

PG C S D
i N

G P D S C D S D S
⎡ ⎤−
⎢ ⎥− − −⎣ ⎦

    (12) 

implies  

1 2 3( ) < ( ) ( ) ( ) ( ) ( ) ( )T T TV t x t S x t y t S y t d t S d t− + +&    (13) 
2 2 2

min 1 max 2 max 3( ) ( ) ( ) ( ) ( ) ( )S x t S y t S d tλ λ λ≤ − + +P P P P P P  
(14) 

3 4 5= ( ( ) ) ( ( ) ) ( ( ) ),x t y t d tα α α− + +P P P P P P        (15) 

where 2
3 min 1( ) ( )r S rα λ@ , 2

4 max 2( ) ( )r S rα λ@ , and 
2

5 max 3( ) ( )r S rα λ@ . Note that 3 ( )rα , 4 ( )rα , and 5 ( )rα  

are ∞K  functions. According to [14, 15], ( )V t  is an IOSS-
Lyapunov function in view of (8) and (15). Introducing a 
change of variable =PK Y , (11) is equal to the LMI (6). 
Then, 1=K P Y− . This completes the proof.  □  
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Corollary 1  Assume that there exist common matrices 

= > 0TP P , 1 1= > 0TS S , 2 2= > 0TS S , 3 3= > 0TS S , 
and Y  such that  

2

2 2 3 0 < 0,
0

T
i i i i i

T T T
i i i i i

T
i

PG C S D PW
G P D S C D S D S

W P I

⎡ ⎤Θ −
⎢ ⎥− − −⎢ ⎥
⎢ ⎥−⎣ ⎦

        (16) 

1 2 > 0,T
i iS C S C−                                                   (17) 

for = 1,2,...,i N . Then, the switched Hopfield neural 

network (3)-(4) with the controller 1( ) = ( )u t P Yx t−  is IOSS 
for ( ) 0d t ≠ . Moreover, it is asymptotically stable for 

( ) = 0d t .  
Proof. Using Theorem 1, the LMI condition in Theorem 1 

ascertains that the switched Hopfield neural network (3)-(4) 

with the controller 
1( ) = ( )u t P Yx t−

 for ( ) 0d t ≠  is IOSS. 

When ( ) = 0d t , it is observed from (13) and (4) that  

1 2
=1

( ) < ( ) ( )[ ] ( )
N

T T
i i i

i
V t t x t S C S C x tξ− −∑&  

2
min 1 2

=1
( ) ( ) ( ) .

N
T

i i i
i

t S C S C x tξ λ≤ − −∑ P P                (18) 

 (17) implies ( ) < 0V t& , which guarantees the asymptotic 
stability from Lyapunov stability theory. This completes the 
proof.  □ 

III. CONCLUSION 
This paper has proposed the IOSS controller for switched 

Hopfield neural networks with disturbance input. A new set of 
sufficient LMI conditions was established to guarantee that 
switched Hopfield neural networks are asymptotically stable 
and IOSS for disturbance input. The proposed IOSS controller 
was obtained by solving a set of LMIs. The proposed control 
method can be extended to a general class of switched 
nonlinear systems with disturbances. 
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