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Abstract-A novel circuit model based on a trainable memristor-

crossbar network integrated with a CMOS circuit for pattern 

classification and recognition is proposed and analyzed in this 

paper. The configurable memristors along each column wires of 
the crossbar are trained by a standard pattern input from the 

row wires of the crossbar to represent the pattern. After the 

training, the crossbar network can classify unknown patterns 

input from the row wires, and the output current from each 

column wire will be normalized by the CMOS circuits to denote 
the probability to classify the unknown patterns with respect to 

the standard pattern associated with the column wire. The 

probabilities can be further processed by a winner-take-all 

competition circuit for decision making. The circuit simulation 

results demonstrate that the proposed circuit based on our 
experimentally demonstrated memristor devices can classify 

patterns by calculating the probabilities and recognize patterns 

with distortions. Moreover, the circuit delay for classifying a 

pattern remains below 1 μs even when the pattern scales up to 

large dimensions. The large-scale parallel signal processing by the 
memristor-crossbar/CMOS circuit enables it to classify and 

recognize patterns with high dimensionality and complexity at a 

much faster speed than the software-based computers. 

Keywords-pattern classification; recognition; memristor; 

crossbar; CMOS analog integrated circuits; probability 

I. INTRODUCTION 

It is challenging for machines to recognize large 

dimensional complex patterns in speech, handwritten 
characters, medical images, bio informat ics, and stocks, etc. 

Although human brains may classify and recognize those 
patterns in a seemingly effort less fashion, it is immensely 

difficult for a computer to achieve the same tasks. The 
software-based computing time for the pattern classificat ion 

increases exponentially with the pattern dimensions (so-called 

the curse of dimensionality), which makes the classificat ion of 
the large dimensional pattern extremely  time-consuming and 

even prohibitive for a modern computer and hardware [1]. The 
complementary metal-oxide-semiconductor (CMOS) based 

analog integrated circuits have also been designed and 
fabricated for pattern classificat ion purpose [2-4], but the 

circuits needed to recognize large dimensional patterns are 

complex, expensive, and energy-consuming. 

In this paper, we propose an electronic circu it for large 

dimensional patterns classification and recognition based on 
the experimentally demonstrated memristors [5], configurable 

resistors [6], and crossbar networks  [7]. The conductance of 
the memristors at the cross point of the crossbar circuit can be 

modified to an arbitrary analog value proportional to the 

amplitude of the input signal from the pattern during the 
training process, which is similar to the memory function of a 

synapse in a neural network. The crossbar network of the 

memristor is a simple network architecture that can be easily  
expanded to large-scale to process the signals from a pattern 

with large dimensional inputs in parallel efficiently, and the 
device density can potentially reach > 10

11
/in

2
 in the crossbar 

circuits fabricated by nanoscale lithography [7]. The 
memristor-crossbar array is integrated with a Si-based CMOS 

circuit, and the output of the circuit gives the probability 
distribution to classify the input pattern with respect to the 

memorized patterns. The electronic pattern classificat ion is a 

high-speed parallel process and can recognize patterns 
efficiently with high dimensionality and complexity. The low-

cost fabrication process for the high-density nanoscale circuits 
and modern  CMOS technology also make the proposed circuit  

model practically v iable and cost-efficient. 

II. CIRCUIT ARCHITECTURE 

The pattern recognition circuit aims to classify patterns 
based on the knowledge of the patterns established statistically  

from supervised or unsupervised training processes, and the 
circuit  classifies the pattern based on the probability belonging 

to each class. An arbitrary pattern can be abstracted as a vector 

 1 2, , , Ny y y y , where iy  represents statistically 

independent variables of a pattern at ith dimension with 

1,2, ,i N . The pattern can also be represented by a 

normalized  probability 
1

/
N

i i ii
p y y


   at the ith 

dimension. Assuming that the patterns can be classified into M  

different classes denoted by j with 1,2, ,j M , based on 

the law of total probability we can have,  

j

i i j

j

p p p                                    (1) 

where 
j

ip is the probability for the pattern with the 

probability function ip  to be classified to class j, sometimes 

referred as the likelihood function. Eqn. (1) can be modified  to 

an alternative format by multip lying 
k

ip  on both sides and 

take the summation with respect to i, 

k j j k j k j

i i i i i i

i i j j i

p p p p p p p p                  (2) 
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The goal of the circuit is to classify an input pattern by 

obtaining 
jp  based on eqn. (2). The latency for solving the 

equation increases exponentially with the dimensions of the 
patterns in the software-based methodologies, therefore it is 

necessary to design an electronic circu it that can solve the 
problem efficiently. 

The proposed pattern classificat ion circu it is shown in fig. 
1. The circu it can be divided into two parts: (1) signal 

inference circu it composed of a crossbar memristor network 

and CMOS operational amplifiers (opamp), and (2) a winner-
take-all (WTA) decision-making competition circu it.  

In the inference stage, an input pattern can be represented 

by a vector  1 2, , ,I I I I

NV V V V , where 
I

iV  denotes the 

voltage input to the ith row wire in the memristor-crossbar 

circuit  (shown in  fig. 1) with 1,2, ,i N . 
I

iV  is applied 

on a memristor with a conductance of 
Ig  on each row wire. A  

memristor with a configurable conductance ijg  at each cross 

point of the crossbar connects the ith row wire and the jth 
column wire. The voltage on the jth column wires is denoted 

by 
P

jV  with 1,2, ,j M . 
P

jV  is applied on a resistor 

with a conductance of 
O

jg  on each column wire and also to 

the negative input terminal of the opamp A1j. The structure of 

opamp is illustrated in fig. 2(a). It uses the complementary  
input differential pairs composed of M0-M4 and M7-M11 to 

provide the rail-to-rail input dynamic range, and employs the 

Class-AB output stage realized  by M5, M6, M12, and M13 to 
achieve the maximized output current swing. M6 and M13 also 

provide a duplicated output to the WTA competition circuit,  
and transistors M14-M16 are serving for the biasing purposes. 

O

jV  denotes the output voltage from the opamp A1j connected 

to the jth column wire of the crossbar with 1,2, ,j M . 

O

jV  and its duplication are output from the “o” and “oc” 

terminals of opamp A1j, respectively. 

 
FIGURE I. STRUCTURE OF THE PROPOSED PATTERN 

CLASSIFICATION CIRCUIT. 

Following the Kirchhoff's Current Law at both the row and  

column wires of the crossbar circuit shown in fig. 1,  

    0I M I M P

i i i i ij

j

V V g V V g          (3) 

    0M P P O O

i k ik k k k

i

V V g V V g         (4) 

where 
M

iV  is the voltage on the ith row wire. Assuming  

the condition 
i ij

j

g g   is held in the circuit design, it  

can be obtained from eqn. (3) that /M I P I

i i j ijj
V V V g g  , 

which can substitute 
M

iV  in eqn. (4), 

 
  0

P

j ij ikj iI P P O O

i ik k ik k k kI
i i

V g g
V g V g V V g

g
    
 

 
   (5) 

 
FIGURE II. (A) THE SCHEMATIC OF OPAMP A1J AND A2J SHOWN IN 

FIG. 1. THE ADDITIONAL DEVICES IN A1J ARE SHOWN IN DASHED 
LINES. (B) CIRCUIT REALIZATION OF THE CONFIGURABLE 

RESISTOR 

O

jg
. (C) WINNER-TAKE-ALL CIRCUIT UNIT. 

When both 
O

k iki
g g  and 2O P

k kV V  are enforced  

for all columns with 1,2, ,k M  in the circuit, the 

underlined terms in eqn. (5) can be enforced to zero for all 

column wires, and eqn. (5) can be modified as  

0
2

O

j ij ikI Oik
i jO I O O

i j ik j k

g g gg
V V

g g g g

 
   

 
           (6) 

The conductance ijg  can be modified  to be proportional to  

j

ip  in eqn. (2) by the training process as described in the 

following, then we have / /j O

i ij ij ij ji
p g g g g  . The 

input voltage 
I

iV  is also proportional to ip  in eqn. (2), 

comparing eqn. (2) and (6), 
jp , the probability for an input 

pattern to be classified to class j, can be expressed as, 

2

O O O

j j jj

y I O

i ji j

V g I
p

V g I
  

 
                 (7) 

where 
O

jI , the current on conductor 
O

jg , determines the 

distribution of 
jp . 

Due to the virtual short property of opamp, the condition 

2O P

k kV V  is ensured by doubling 
P

jV  by the resistor ladder 
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R at port “o” of A1j. The condition O

k iki
g g  is enforced 

by the transistors 
O

jM , resistors 
jg , capacitors 

O

jC  , as  

shown in fig. 1 and fig. 2(b), and the incorporated opamps A1j 

and A2j with their structures shown in fig. 2(a). When the 
circuit is operated in the normalizat ion mode, all the switches 

S1j, S2j, and S3j are closed, an all “1” input voltage vector 

 , , ,I

R R RV V V V  is imposed on all the row wires with  

VR representing the reference voltage, while the output voltage 
O

jV is enforced to -VR on all the column wires by the feedback 

mechanis m introduced by the second stage of opamp A2j. At 

the equilibrium, 
O

jg  the series resistance of jg  and the 

transistors 
O

jM , is self-adjusted to the value of 
iji

g in  all 

column wires, and the gate-source voltage of 
O

jM  are 

memorized in capacitor 
O

jC . When the circuit is operated in 

the recognition mode, the switches S1j and S2j are open, while 

S3j still remains closed, the voltage memorized  by the 

capacitor 
O

jC  biases 
O

jM  in the triode region, and the 

condition 
O

j iji
g g is thus sustained. Due to the current 

leakage through S2j, the memorized voltages on 
O

jC  have to 

be refreshed periodically. 

The comparison for the probability 
jp  is realized by the 

WTA competition among the input currents 
O

jI from different 

columns. In the WTA circuit shown in fig. 2(c), each unit  

associated to one of the column wires adopts  the duplication of 
O

jI from terminal “oc” of the opamp A1j to the port “y” and 

charges the capacitor C0. When the voltage exceeds the 
threshold of the transistor N3, N1 is turned on and feeds a 

current back to charge C0 further and increases the output 
voltage at “y”, meanwhile provides the leakage current at 

“yout” port to all the other units to decrease their 
competencies. The current mirro r composed of N4 and N5 

duplicates the leaking currents from all other units associated 

to other column wires input from “yin” to d ischarge C0. As 
shown in fig. 1, all the WTA units are connected through the 

“yin” and “yout” ports to a global inhibitory node, and the 

transistors 
R R R

1 2 MM ,M , ,M  in fig. 1 serve to init iate and  

reset the competition. 

III. SIMULATION AND DISCUSSIONS 

The proposed pattern recognition circu it has been designed 

and simulated using a 0.18-μm CMOS process. The 

conductance 
Ig  has to be carefully selected to satisfy the 

condition
I

ijj
g g , but meanwhile confined by the 

maximal output current of the opamp A1j. In this circuit, 
Ig is 

set to 50 kΩ. 

During the training process, all the switches S1j, S2j, and S3j 
are open, by applying the input voltage vector 

 1 2, , ,I I I I

NV V V V representing a standard pattern to the 

row wires, and setting the training voltage, 
T

kV , on a 

corresponding column wire to a value exceeding the training 

threshold voltage, the configurable memristors at the cross 

points along the column can be trained to the conductance, 
ijg , 

proportional to the component 
I

iV of the input voltage vector 

IV . The voltages on the other column wires,  T

jV j k , 

are set to a value below the training threshold voltage, 
therefore the configurable memristors at the cross points along 

the other column wires are not configured. More advanced 
feedback training mechanism can be included to tolerate and 

correct the defects in ijg values to achieve the expected 

classification probability 
jp . 

The condition 2O P

k kV V is satisfied by the resistor ladder 

with two 1 MΩ resistors in series. The opamp draws a biasing 
current of about 40 μA, and the aspect ratios of nMOS and 

pMOS in the opamps and WTA units are chosen as 
Wn/L=12/0.6 and Wp/L=24/0.6, respectively. Since the 

application of global inhibitory node, all transistors in the 
WTA units are designed with the standard sizes (Wp=24 μm, 

Wn=12 μm, and L=0.6 μm), which in turn saves  the physical 

areas. In order to remove the body effects and ensure the 

resistances of 
O

jM  being independent of their source voltages, 

VBS of 
O

jM is enforced to be zero by utilizing pMOS with  

shorted body and source terminals. 

A. Pattern Classification 

In the simulation, four characters, “A”, “C”, “L”, and “U”, 

as are shown in fig. 3(a), are represented by sixteen p ixel 

patterns with  their corresponding input voltage vectors 

 0,1,1,0,1,0,0,1,1,1,1,1,1,0,0,1I

AV  ,  1,1,1,1,1,0,0,0,1,0,0,0,1,1,1,1I

CV  , 

 1, 0, 0, 0,1, 0, 0, 0,1, 0, 0, 0,1,1,1,1I

LV  , 

 1,0,0,1,1,0,0,1,1,0,0,1,1,1,1,1I

UV  , where the black and white pixels 

in the patterns are denoted by “1” (
I

iV = 50 mV) and “0” 

(
I

iV = 0 V), respectively. Four columns in the crossbar are set 

to represent the characters, “A”, “C”, “L”, and “U”, 
respectively, and the conductance of the configurable 

memristors in the crossbar are set to 10
-6

 S or 0 S, 

corresponding to the 1 or 0 components of their corresponding 

vector 
I

iV , respectively. 

To evaluate the circuits, the four different input voltage 

vectors 
I

AV ,
I

CV ,
I

LV , and
I

UV were applied  on the row wires of 

the crossbar. The output current 
O

jI  was simulated as the 

function of t ime. For example, when the vector 
I

UV  is input to 
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the circuit, the current 
O

jI  is shown as the function of time in  

fig. 3(b). After the initial increase for all 
O

jI  for a period of 

567 ns, only 
O

UI increases, while 
O

AI , 
O

CI , 
O

LI , and decrease 

gradually. After in itiating the WTA competition, with in 160 ns 

the output probability 
jp  from the column with the largest 

O

jI  (
O

UI  in this case) is set to 1, and the 
jp  from the rest of 

the columns are set to 0, the final output from the circuit can  

be expressed as a vector    * , , , 0,0,0,1A C L Up p p p p  . 

When the different voltage vectors 
I

AV ,
I

CV ,
I

LV , and
I

UV are 

input, the output probability vectors obtained from the circuit  

are  * 1,0,0,0p  ,  * 0,1,0,0p  ,  * 0,0,1,0p  , 

and  * 0,0,0,1p  , respectively, which demonstrates the 

primary classificat ion function of the circu it.  

B. Distorted Patterns 

The proposed circuit is further assessed in terms of the 

responses to distorted patterns. Fig. 4(a) shows the distorted 
patterns when they transform from standard “A” to “C”, and 

the hamming d istance, which is defined as the count of the 
different components of the input voltage vectors of the 

distorted and original patterns, increases from 0 to 8 (the 

intrinsic hamming distance between standard “A” and “C” is  
8.). 

Fig. 4(b) characterizes the output of the circuit to the 
different input patterns transformed from “A” to “C” in terms  

of the output classificat ion probability 
jp  (before WTA 

competition) as the function of the hamming distances. It can 

be seen that when the pattern transforms from “A” to “C”, 
Ap  , the probability to classify the pattern as “A”, decreases 

from 1 to 0, meanwhile 
Cp  , the probability to classify the 

pattern as “C”, increases from 0 to 1. The patterns with 
approximately equal hamming distance from “A” and “C” 

may  confuse the competition circu it and lead to erroneous 
decisions. 

 
(a)                                        (b) 

FIGURE III. (A) STANDARD PATTERNS “A”, “C”, “L”, AND “U”. (B) 

TRANSIENT RESPONSES OF THE OUTPUT CURRENT 

O

jI
 ON THE 

INFERENCE STAGE WHEN THE STANDARD PATTERN “U” IS INPUT 
TO THE CIRCUIT. 

 
(a) 

 
(b)                                        (c) 

FIGURE IV. (A) INPUT PATTERN TRANSFORMS FROM “A” TO “C”. 

THE DIGIT UNDERNEATH REPRESENTS THE HAMMING DISTANCE 
FROM THE STANDARD PATTERN “A”. (B) CLASSIFICATION 

PROBABILITIES 

Ap
 AND 

Cp
 SHOWN AS THE FUNCTIONS OF 

THE HAMMING DISTANCE FROM THE STANDARD PATTERN “A”. (C) 

CIRCUIT DELAY SHOWN AS THE FUNCTION OF THE HAMMING 
DISTANCE FROM THE STANDARD PATTERN “A”. 

C. Circuit Delay 

High speed is one of the major advantages of the proposed 
pattern recognition circuits. The circuit delays, defined as the 

time for the circuit outputs being bifurcated toward different 

directions in the inference stage (as shown in fig. 3(b)), and 
the time for the outputs being settled to the stable values in the 

competition stage, are analyzed. 

In the proposed circuit, the delay  not only depends  on 

parameters of the device elements, but also influenced by the 
input patterns, as shown in fig. 4(c). When pattern transforms 

from “A” to “C”, both the delays on the inference and 

competition stages change as the function of the hamming  
distance of the patterns distorted from the standard patterns, 

and are maximized at the position with approximately equal  
hamming distance from “A” and “C”. The delay on the 

inference stage takes 70%~80% of the overall delay.  

D. Dimension Scaling 

When the dimension of the input pattern, N, scales up, the 
equivalent circu it for characterizing the delay has been  

illustrated in fig. 5(a), where 
Ig  is the average input 

conductance, g  and C are the average conductance and 

capacitance at cross points of the crossbar, and RL and CL are 

the loading resistance and capacitance of opamp, respectively. 
The opamp can be modelled  as a single pole system with the 

trans-conductance function of    0 /m m p pg s g s   , 

where 
0

mg  is the DC trans-conductance, and p  is the 

dominant pole of the opamp, and s is the Laplace operator. By  

applying the Kirchhoff's Law at the points A and B shown in 

fig. 6(a), 

   

 
2

I

n

n p
I

g sC g V v
v v

g g sC g

 
 

 
            (8) 
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     0
1 1

2

I

np n m p

p LI
p L

g sC N g V vv v g
v sC

s R Rg sC g





    
           

  (9) 

Based on our circuit design, the conditions 

 0 || 1m Lg R R  , ~ 1LgR , and 1N   are satisfied, we 

may have the simplified characterization function of 

    02 || 0p m L pN g sC s g R R     , and s is  

solved as 

   

 

2
0 0

0 2

|| ||

2 4 2 42 2

||

4

p p m L p p m L p

m L p

p

g g R R g R Rg g
s

N NC C C

g R R C

N g

    




 
         

 

  

  (10) 

The circuit 3-dB bandwidth approaches p when the input 

vector dimension N scales up, therefore, the circuit delay  

initially increases with  N and saturates at the intrinsic delay  of 
the opamp. Fig. 5(b) shows the circuit speed characteristics 

based on the simulation on the inference stage when the input 
vector dimension scales up. It can be seen that the circuit delay  

drastically increases with N over the low dimensional range (N  
< 8), however, saturates approximately at 800 ns on the large 

dimensional range (N > 16). The results indicate that the 

proposed circuit  is potentially capable to classify patterns with 
large dimensions at a much faster speed than the software-

based computer. 

 
(a)                                        (b) 

FIGURE V. (A) EQUIVALENT CIRCUIT FOR DELAY ANALYSIS. (B) 
CIRCUIT DELAY SHOWN AS THE FUNCTION OF THE DIMENSION 

OF INPUT PATTERNS. THE SQUARES ARE THE SIMULATED 

RESULTS ON INPUT DIMENSIONS OF 2, 4, 8, 16, 32, 64, 128, AND 256, 
RESPECTIVELY. 

E. Energy Consumption 

The energy consumption for the circu it is calculated, it  
takes ~1 pJ per d imension to recognize a pattern. The maximal 

power density at each cross point in the crossbar is ~1 μW/μm
2
, 

which falls in the range of the power density in a standard Si 
CMOS circuit. The typical operat ion power for each opamp in  

the circuit is 40 μW. It is worthwhile to notice that the delay of 
the proposed pattern classification circuit is associated with 

the 3-dB bandwidth of the opamp. One can further min iaturize 
the power consumption by incorporating opamps with smaller 

bandwidth, however, at the cost of an increased delay and 

therefore lower speed. Carefu l t rade-off has to be made 
between power and speed for specific applications.  

IV. CONCLUSION 

A novel circuit model for pattern classification has been 

proposed based on statistic theorem. The circuit architecture is 
composed of a memristor-crossbar/CMOS hybrid  network, 

with each column of the crossbar representing a pattern class. 

When a pattern is input from the row wires of the crossbar, the 
output current from each column is normalized by a CMOS 

analog circuit, and the probability to classify the input pattern 
to a class is denoted in terms of the normalized output current 

from each column. By comparing the output currents, the input 

pattern can be finally classified to a class with the largest 
probability in a winner-take-all competit ion circu it. The delay  

to classify a pattern is at the order of sub-μs and does not 
increase when the pattern dimension scales up, which endows 

the circuit with the capability to recognize patterns with large 
dimensions at a speed much faster than the software-based 

computers. 
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