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Abstract—Pipes with supported ends conveying pulsating fluid 

may lose the dynamic stability due to parametric instability, 

therefore the piezoelectric actuators are taken as the control 
actuators here for controlling vibration of pipeline. First, the 

controlled mathematical models of pipes conveying fluid were 

established. Second, model reference adaptive control (MRAC) 

system and MRAC system based on adapti ve gain of the PD were 

designed. Third, the effects of controllers were verified and the 
effects of the control parameters on the controllers were analyzed 

also. During simulation, the time of vibration displacement 

decaying to zero, also the time and total energy of control input 

were taken as evaluation indexes. The results of numerical 

simulation showed that the pipeline vibration could be controlled 
well by the controllers which were designed by adapti ve control 

strategy. 
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control (MRAC); piezoelectric actuator 

I. INTRODUCTION 

Pipes conveying fluid have been widely used in many fields 

of industry. Considering the fluid is pulsatile, pipeline system 
may lose the stability by parametric resonances, which the 

pipeline vibration is continuous and the displacement is very 

large. Because dynamics of pipes conveying fluid are typical 
nonlinear dynamic behaviours, how to reduce vibration of 

pipeline has remained one of intense interest to researchers in 
this field  nowadays. At present, the main control methods are 

PID control, independent modal space control (IMSC) [1, 2], 
linear quadratic optimal control (LQOC) [3], adaptive control 

[4, 5], robust control [6] and fuzzy control [7], etc. 

II. MODEL OF CONTROLLED PIPELINE SYSTEM 

The pinned-pinned pipe is taken as an example, the model 
of controlled system is shown in fig.1. x  and y stand for vertical 

and horizontal displacement, respectively. K and G are 

equivalent linear and shear stiffness  of the foundation, 
respectively. U, R and L mean average velocity, outside 

diameter and length of the pipe, respectively. a and b are the 

locations of the actuators .h and   are the thickness and half 

envelop angle of the actuators, respectively. 

 

FIGURE I. THE MODEL OF CONTROLLED SYSTEM 
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FIGURE II. MRAC SYSTEM 

There are two actuators located at opposite side of the pipe 

and these two actuators are driven 
o180 out of phase， the 

moment could be express as the following expression [8]
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in which CE and AE  are the Elastic Modulus of the pipe and 

the actuator pair, respectively. CI and AI  are the cross-section 

moment of inertia of the pipe and the actuator pair,  

respectively. d means the electric strain constant. 

Suppose the fluid is non-viscosity and incompressible, the 

effects of supporting motion and high-order variables could be 
ignored also, the differential equation of motion for controlled  

pipeline system could be written as 
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where M and m stand for mass per unit lengths of  the fluid 

and pipe, respectively. Aand A  are the cross sectional areas of 

the fluid and p ipe, respectively. T is the axial force o f the 

cross section in the bottom of the pipe. P is the hydrodynamic 
force per unit area of cross sectional in the endpoints of the 

pipe. v is the Poisson’s ratio of the pipe. is the function of 

Dirac delta. 

In order to avoid the influence of parameters ’ units, some 

parameters are introduced to quantified the equation (3) 
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Meanwhile, the Galerkin method is used for solving the 
motion equation 

( , ) T   Φ Q                              (5) 
in which 
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where ( )i  are vibration mode functions, ( )iq  are 

generalized coordinates. 
We could define 
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Assume that the velocity of flu id has the following no-

dimensional form 
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where 0u  and w  are the average velocity and circle 

frequency of pulsating fluid, respectively. u is the pulse 

amplitude of the fluid. 

Define the preload of the pipeline  

 0 1 2T v                                 (8) 
The first order differential equations of pipeline could be 

expressed as 
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in which 
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III. RESEARCH FOR THE ADAPTIVE CONTROL ALGORITHMS 

A. Model of Reference Adaptive Control 

MRAC system only needs to establish suitable reference 

model, the model of MRAC system is shown in fig. 2. The 
MRAC system is mainly composed of reference model, 

controllable system and adaptive control controller. 

The error vector could be expressed as 

m e z z
                                 (10) 

where 
mz is state vector of reference model. 

When the control system gets into a good groove,
( )W W . 

Define 

( ) Ψ W W                                 (11) 
And we could define the Lyapunov function as the 

following 
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in which J and Γ are positive defin ite symmetric matrixes. 

When 0S  , the system is stability. The control law could 

be expressed as 

( ) T T W F Jez Γ                         (13) 

B. Model of Reference Adaptive Control Based on Adaptive 

Gain of the PD 

Traditional PID controller has many advantages, e.g. the 

construction of the controller is simple, and controlling 
parameters are easy for regulating, but it is difficult  for PID 

controller to satisfy the requirement of real-t ime control for 

pipeline system. Also, the MRAC system is only applied to the 
situation that variables of the system are measurable, which is 

not reality for industrial applications. Thus, in order to solve 
the problem, several linear parts of the equation need be 

decoupled, and then according to the parametric resonances of 
the system, the MRAC system based on adaptive gain of the 

PD was designed. The model of the system is similar to the 

MRAC system. 

After decoupling, the equations(9) could be expressed as 
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where 2 1i   are the generalized coordinates of the pipeline 

system after decoupling. iw are inherent frequencies  of the 

pipeline system. 
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The eigenvalues of the matrix
i

Γ  have negative real part, 

thus there are positive definite matrix 
iP and

iQ , which should 

satisfy the following equation 
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We could define the control law of adaptive controller 
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where 
ik  are parameters of the adaptive controller. 

Define the Lyapunov function as the following 
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where [ ]T
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i
ε ,

i are arithmetic numbers. 

When 
ik  are expressed in the following equations, 0V  . 

The system is stable. 
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where    1 2 2 1 2 , 1,2i i i ip p L L i 
i

P . 

When the first order and combination parametric 
resonances happened, the energy of the first order model 

motion is the highest, 1i  . When the second-order parametric 

resonance happened, the energy of the second order model 
motion is the highest, 2i  . 

IV. SIMULATION AND RESULTS ANALYSIS 

In simulation, the parameters of the system were shown in  

table 1. The MRAC controller parameters are 100 P Γ I . 

The parameters of the MRAC controller based on adaptive gain 

of the PD are 1 50  , 2 400  and 10Q I .Initial values of 

vibration are 0.001iq   , 0iq  . 

TABLE I. PARAMETERS OF THE SYSTEM WITH SUPPORTED ENDS. 

 
0T  p  k  g      

0u    

Pinned-

pinned 
0 0 0 0 5000 0.005 2 0.4 

Clamped-
clamped 

0 0 0 0 5000 0.0013 4 0.2 

Fig. 3 and fig. 4 were simulation results of the adaptive 

controllers for pipes with supported ends, when the first order 
parameter resonance of the pipeline system happened. We 

could draw a rough conclusion from the figures that the 
vibration displacements could be decayed to zero in few 

seconds by the controllers. 
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(a) Pinned-pinned pipe. (b) Clamped-clamped pipe 

FIGURE III. THE CONT ROL EFFECTS OF MRAC CONTROLLERS. 
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(a) Pinned-pinned pipe. (b) Clamped-clamped pipe 

FIGURE IV. THE CONTROL EFFECTS OF MRAC CONTROLLERS 
BASED ON THE ADAPTIVE GAIN OF THE PD. 

Because the lengths and locations of the actuators have 

great influence on the controller, in order to get better control 
results, the effects of controller parameters on the controllers 

must be analysed. 

The pinned-pinned pipe was taken as the example, the 

influences of the lengths and locations of the MRAC 
controllers for control results were shown in fig. 5. We could 

observe from the figures as below, when the lengths of the 

actuators were 0.3 and the actuators were located at the 
midpoint of the pipeline, the displacements of the system were 

the smallest. Simulation results show that the control effects of 
the controller were the best. 
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(a) Influences of the lengths of the actuators 
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(b) Influences of the locations of the actuators 

FIGURE V. INFLUENCES OF THE LENGTHS AND LOCATIONS OF THE 

MRAC CONTROLLERS. 

The influences of the lengths and locations of the MRAC 
controllers based on the adaptive gain of the PD on the control 

effects were shown in fig. 6. We could draw similar 
conclusions from the figures as below. 
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(a) Influences of the lengths of the actuators 
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(b) Influences of the locations of the actuators 

FIGURE VI. PARAMETERS INFLUENCES OF THE MRAC 
CONTROLLERS BASED ON THE ADAPTIVE GAIN OF THE PD. 

V. CONCLUSIONS 

The differential equation of motion for pipes with supported 

ends has been established. In response to the phenomenon that 

pipeline system may lose stability due to parametric resonances, 
the MRAC system and the MRAC system based on the 

adaptive gain of the PD were designed. The following 
conclusions could be drawn as following: 

First, the vibration displacements of pipes with supported 
ends can be decayed in short time by the adaptive controllers. 

Second, in order to get the best control effects, the lengths 
and locations of the actuators must be optimized. 

Third, compared with the MRAC system and the MRAC 

system based on the adaptive gain of the PD, the latter can be 
realized easier than the former in practical applications. 
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