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Abstract-This paper is devoted to advanced wavelet-based 

discrete-continual finite element method of local structural 

analysis. Structures with regular (in particular, constant or 

piecewise constant) physical and geometrical parameters along 
so-called “basic” direction are under consideration. High-

accuracy solution of the corresponding problems at all points of 

the model is not required normally, it is necessary to find only the 

most accurate solution in some pre-known local domains. 

Wavelet analysis is a powerful and effective tool for 
corresponding researches. Initial continual and discrete-continual 

formulations of multipoint boundary problem of three-

dimensional structural analysis are presented. The last 

formulation is transformed to corresponding localized one by 

using the discrete Haar wavelet basis and finally, with the use of 
averaging and reduction algorithms, the localized and reduced 

governing equations are obtained. Special algorithm of 

localization with respect to each degree of freedom is presented. 

Keywords-advanced wavelet-based discrete-continual finite 

element method; local structural analysis; multipoint boundary 

problem; three-dimensional problem; operational formulation; 

discrete-continual formulation; averaging, reduction; Haar basis; 
localization with respect to each degree of freedom 

I. INTRODUCTION 

Research and development of correct mathematical models 

and methods of structural mechanics are the most important 

aspects of ensuring safety of buildings and complexes. The 
analysis and design of structures normally require accurate 

computer-intensive calculations using numerical (discrete) 
methods. The field of application of discrete-continual finite 

element method (DCFEM) [1], that is now becoming available 
for computer realization, comprises structures with regular (in  

particular, constant or piecewise constant) physical and 

geometrical parameters in some dimension (so-called “basic” 
direction (dimension)). Considering problems remain continual 

along “basic” direction while along other directions discrete-
continual methods presuppose finite element approximation.  

Solution of corresponding resultant multipoint boundary 

problems for systems of ordinary differential equations with 

piecewise constant coefficients and immense number of 
unknowns is the most time-consuming stage of the computing, 

especially if we take into account the limitation in performance 

of personal computers, contemporary software and necessity to 
obtain correct semi analytical solution in a reasonable time. 

However, high-accuracy solution at all points of the model is 
not required normally, it is necessary to find only the most 

accurate solution in some pre-known domains. Generally the 
choice of these domains is a priori data with respect to the 

structure being modelled. Designers usually choose domains 
with the so-called edge effect (with the risk of significant 

stresses that could potentially lead to the destruction of 

structures, etc.) and regions which are subject to specific 
operational requirements. It is obvious that the stress -strain 

state in such domains is of paramount importance. Specified  
factors along with the obvious needs of the designer or 

researcher to reduce computational costs by application of 
DCFEM cause considerable urgency of constructing of special 

algorithms for obtaining local solutions (in some domains 

known in advance) of boundary problems. Wavelet analysis 
provides effective and popular tool for such researches  [5]. 

Solution of the considering problem within multilevel wavelet  
analysis is represented as a composition of local and global 

components [2, 3, 7]. 

II. OPERATIONAL FORMULATION 

Let 3
x

 be direction along which physical and geometrical  
parameters of three-dimensional structure are piecewise 
constant (“basic” direction). In is necessary to note that these 

parameters can be changed arbitrarily along 1
x

 and 2
x

. 
Operational formulation of corresponding resultant multipoint 

boundary problem of three-dimensional theory of elasticity at 
extended domain [7], embordering considering structure, 

within DCFEM has the form: 
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III. DISCRETE-CONTINUAL FORMULATION 

DCFEM presupposes finite element approximation of 

extended domain along directions of structure perpendicular to 

the basic direction, while along basic direction problem remain  
continual (thus extended domain is divided into discrete-

continual fin ite elements). Resultant multipoint boundary 
problem for the first-order system of ordinary differential 

equations with piecewise-constant coefficients within DCFEM 
[1, 7] has the form: 
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IV. REDUCED WAVELET -BASED DISCRETE-CONTINUAL 

FORMULATION 

Let 
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Thus, considering problem (8) is transformed to a 
multilevel space by multilevel wavelet transform. Due to the 

high efficiency of the localization process and the simplicity of 
the computational algorithms and computer realization, discrete 

Haar wavelet basis has been used and corresponding direct and 

inverse algorithms of transformations has been performed [7]. 
We believe that this is one of the simplest and best-suited 

approach for local structural analysis. Due to special algorithms 
of averaging within multi grid approach, reduction of the 

problems is provided. This advanced wavelet-based DCFEM 
allows reducing the size of the problems and obtaining accurate 

results in selected domains simultaneously. This is rather 

efficient method for evaluation of local phenomenon  (such as, 
for instance, stress concentration or concentrated force or even 

stress in special member) in buildings and structures. 
Furthermore, the proposed method allow qualitative and 

quantitative assessments of the degree of localization of various 
kinds of design factors and evaluation of the effect of each 

degree of freedom on behavior of the structure. Thus it often 
turns out to be possible to construct not only a high-quality 

design model, but also to make some reasonable design 

changes. 

V. RESULTANT MULTIPOINT BOUNDARY PROBLEM 

Solution of problem (26)-(28) is accentuated by numerous 
factors. They include boundary effects (stiff systems) and 

considerable number of differential equations (several 
thousands). Moreover, matrices of coefficients of a system 

normally have eigenvalues of opposite signs and corresponding 
Jordan matrices are not diagonal. Special method of solution of 

multipoint boundary problems for systems of ordinary  
differential equations with piecewise constant coefficients in 

structural analysis has been developed. Not only does it 

overcome all d ifficulties mentioned above but its major 
peculiarities also include universality, computer-oriented 

algorithm, computational stability, optimal conditionality of 
resultant systems and partial Jordan decomposition of matrix of 

coefficient, eliminating necessity of calculation of root 
(principal) vectors [4]. 

VI. VERIFICATION SAMPLES 

For verification and illustrating the efficiency of the 

proposed method in multilevel localization and reduction of 
problem size, a lot of numerical samples have been considered 

[7]. The obtained results show an efficiency of the proposing 

method for localization and reducing the size of the problem. 
After comparison between conventional FEM (ANSYS 

Mechanical simulation software has been used for solution of 
problem in terms of FEM) [6, 7]and advanced wavelet-based 

DCFEM (for local structural analysis), it become clear that the 
localization of the problem, provide high-precision results for 

selected domains even in high level of reduction in wavelet 
coefficients. This localization can be imposed to any desired 

domain in the structure and, by choosing an optimum reduction 

matrix, high accuracy solution of the problem with an 
acceptable reduced size can be obtained. However, results of 

such local analysis may be unacceptable in the other 
(unselected) domains. Analysis of the behavior of the 

fundamental functions of boundary problems was under 
consideration as well in order to ensure the correct choice of 

reducing parameters. Generally it was confirmed  that advanced 

wavelet-based DCFEM is more effective in the most critical, 
vital, potentially dangerous domains of structure in terms of 

fracture (areas of the so-called edge effects), where some 
components of solution are rapidly changing functions and 

their rate of change in many cases can’t be adequately taken 
into account by the conventional FEM [6, 7]. 
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