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Abstract-The scheduling for molten iron logistic optimization is to 
determine the distribution of molten iron from iron-making stage 
to steelmaking stage, the transportation routes of torpedo cars 
and locomotives such that the molten iron from blast furnaces 
can be delivered to the steelmaking shops on schedule and on 
quality. By taking the molten iron transportation process of an 
iron and steel enterprise as research background, the paper 
investigated the torpedo car    scheduling problem, which is a key 
problem in the molten iron logistics optimization and developed a 
mixed integer programming model. The model was then solved 
by commercial optimization software CPLEX to obtain the 
torpedo car scheduling scheme. Meanwhile, another scheduling 
scheme was obtained by a heuristics based on the nearest 
neighborhood idea in which the earliest available torpedo car is 
used to service the un-serviced task whose tapping time is the 
earliest.  Two schemes were compared to validate the efficacy and 
reasonability of the model. 

Keywords-torpedo car scheduling; mixed integer programming; 
heuristics; the nearest neighbourhood 

I. INTRODUCTION 

With the speeding up of global integration, the 
competitions of iron and steel industry are intensifying; hence 
it is solved to research a solution of scheduling optimization in 
production management. The schedule of molten iron logistic 
optimization is the problem of meeting the balance between 
supply from the blast furnaces and demand of the steel-making 
works for a fleet of torpedo car (TPC) to transport molten iron, 
and the following key elements including the tapping 
information of blast furnaces, the demand of converters, and 
the status of preprocess positions such as deslagging, 
desulfuration and dephosphorization, should be taken into 
consideration [1]. 

Torpedo car scheduling problem, as the key problem in the 
molten iron logistics optimization, calls for the design of a set 
of routes, all tasks are serviced by a set of identical torpedo car 
located at a central park with known demands and a set of 
operating time constrains are satisfied. Figure 1 shows the 
operation process such as tapping iron, heavy pot 
transportation and empty pot transportation of a torpedo car in 
the process of performing transportation tasks.  

 

FIGURE I. PROCESS DIAGRAM OF TRANSPORTATION. 

Italian scholar Baldacci proposed the mixed mathematical 
programming, which is a kind of accurate algorithm to solve 
VRP [2-5]. The VRP in the iron and steel enterprises could be 
summarized as the pickup and delivery problem with time 
window, called PDPTW. In the PDPTW, introduced by 
Savelsbergh and Sol [6], a fleet of identical vehicles has to be 
optimally routed and each task is to be serviced within a time 
window in addition to matching restrictions and precedence 
restrictions.  

In this paper, we describe a mixed integer programming 
formulation based on the torpedo car scheduling problem, 
according to the site factors such as the supply and demand of 
molten iron and the distance between each station point. 

II. DISCUSSED PROBLEMS 

Compared with the molten iron allocation problem which 
solves the problem when will transport the molten iron from 
blast furnace to steel-making work, the torpedo car scheduling 
problem is the problem of designing optimal delivery routes 
for a fleet of torpedo car to transport molten iron with given 
demands. The following assumptions are needed before setting 
up model. There are some assumptions. i) Every route 
performed by a torpedo car must start and end at the park and 
the load carried must be less than or equal to the vehicle 
capacity. ii) Assuming that the information such as iron weight 
of production and demand, transportation time, loading time 
and pouring time are known. iii) Assuming that the number of 
locomotive which drags torpedo car is enough. 

The simplified layout diagram of the rail tracks for molten 
iron transportation between the iron and steel-making plants is 
shown in figure 2. The problem considered in this paper is 
described as follows: An undirected graph G = (N, A), as a 
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transportation network, is given where N {0}O D= ∪ ∪  is the 
set of n+1  nodes and A 

{(0, ): } {( ,0): } {( , ): , } {( ,o):o o O d d D o d o O d D d= ∈ ∪ ∈ ∪ ∈ ∈ ∪
, }o O d D∈ ∈  is the set of arcs. Node 0 represents the park, O 

denotes a set of origination sites and D denotes a set of 
destination sites. Each destination requires the molten iron 
from the origination and a set of identical vehicles are 

stationed at the park 0. With o O∈  and d D∈  is associated a 

travel time odt  ( , ( , )odt o d ∈
A), including three blast furnaces 

and two steel-making works and the figure 3 indicates the 
nodes of transportation task. 

 

FIGURE II. LAYOUT OF THE RAIL TRACKS FOR TASK. 

 

FIGURE III. NODES OF TRANSPORTATION MOLTEN IRON 
TRANSPORTATION .  

The transportation tasks are composed of a set N = {1,…, 
n}. For each task i N∈ , it is associated a loading station 

io O∈  and a pouring station id D∈ . The time window 

[ , ]i ia b , where ia  and ib  represent the earliest and latest time 

to implement task i , that is, ia  is the begin of loading iron 

and ib  is the end of pouring iron. The operation time of 

loading and pouring are il  and ip , respectively. For a subset 

in each origination state denoted by { | }o iSN i N o o= ∈ = , the 

tasks must be picked up according to the given order 
1 2( , ,..., )osn
o o oi i i  (Here o osn SN= ) for molten iron loading 

operation; in the same way, for each subset of tasks in the 
destination denoted by { | }d iEN i N d d= ∈ = , the tasks must 

be picked up according to the given order 1 2( , ,..., )den
d d di i i  (Here 

d den EN= ) for molten iron pouring operation. 

A fleet of v identical torpedo car of limited capacity 
stationed at the park has to fulfill transportation task. For each 
torpedo car k V∈  leaves the park 0 at time kA , visit blast 

furnace and convert within its time window [ , ]k kA B , and 

return to the park before kB . 

III.  MODELLING 

A. Model Parameters 

TABLE I  .SYMBOL DESCRIPTION OF MODEL. 

Symbol Description 

O 
Sites of origination, a set of tapping 

holes located at bottom of blast 
furnaces  

D 
Sites of  destination, a set of iron 

pouring holes at steel-making shops 

odt  The travel time from site o to site d 

N A set of transportation tasks 

oi 
The origination site/tapping hole of task 

i∈N 

di 
The destination site/iron pouring hole 

of task i∈N 

SNo 
A subset of tasks SNo⊆N originating 

from site o 

ENd 
A subset of tasks ENd⊆N delivering to 

site d 

[ , ]i ia b  The time window for the task i∈N  

il  The loading time for the task i 

ip  The pouring time for the task i 

V A set of torpedo cars 

[ , ]k kA B  
The time window for the torpedo car 

k V∈  

B. Variable Definition 

1,if  task  is  picked up directly after task  by car 

0,Otherwiseijk

j i k
x


= 


0

1,if  task  is  the first one picked up by car 

0,Otherwisejk

j k
x


= 


0

1,if  task  is  the last one picked up car 

0,Otherwisei k

i k
x


= 


 

the loading start time of task  at its originationis i=  

the pouring end time of task  at its destinationie i=  
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C. Mixed Integer Programming Model 

The mathematical formulation of the torpedo car 
scheduling problem is as follows: 

min ii N
e

∈∑                                                (1) 

s.t.  {0}
1,ijkk V j N

x i N
∈ ∈

= ∀ ∈∑ ∑ ∪               (2) 

{0} {0}
, ,ijk jiki N i N

x x j N k V
∈ ∪ ∈ ∪

= ∀ ∈ ∈∑ ∑     (3) 

0 0 1,jk j kj N j N
x x k V

∈ ∈
= ≤ ∀ ∈∑ ∑               (4) 

,
i ii i o d i ie s t l p i N≥ + + + ∀ ∈

                       (5) 

(1 ) ,
i ji d o ijk jk V

e t M x s i j N
∈

+ − − ≤ ∀ ≠ ∈∑    (6) 

0 0(1 ) , ,
jk o jk jA t M x s j N k V+ − − ≤ ∀ ∈ ∈

       (7) 

0 0(1 ) , ,
jj d j k ke t M x B j N k V+ − − ≤ ∀ ∈ ∈

      (8) 

1 , , {1,2,..., -1}l l l
o o o

oi i i
s l s o O l n++ ≤ ∀ ∈ ∈

             (9) 

1 1 , , {1,2,..., -1}l l l
d d d

di i i
e e p d D l n+ +≤ − ∀ ∈ ∈

        (10) 

,i is a i N≥ ∀ ∈                                               (11) 

,i ie b i N≤ ∀ ∈                                               (12) 

{0,1}, , {0},ijkx i j N k V∈ ∀ ≠ ∈ ∪ ∈
               (13) 

Objective (1) of the model is to minimize the total 
weighted accomplishment time. Constraints (2) specify that 
each task i∈N must be serviced exactly once. Constraints (3) 
are viewed as the flow conservation constraint of net flow 
problems. Constraints (4) ensure the car must leave and return 
to the park. Constraints (5) define the time of completing a 
transportation task and the equation indicate the task is 
completed without waiting time. Constraints (6) guarantee that 
a station point can only be visited after the previous one on the 
same torpedo car completes processing. Constraints (7) and (8) 
ensure that each torpedo car satisfy the time window 
restrictions. Constraints (9) indicate that a car loads molten 
iron after the prior pot has done on the station of origination 
and constraints (10) indicate that a car pours molten iron after 
the prior pot has done on the station of destination. The time 
window restrictions of each transportation task are defined by 
constraints (11) and (12). Constraints (13) define (0-1) 
variables. 

D. Generation of Random Data 

The data associated with the mathematical model were 
generated at random according to the practical situations in the 
iron and steel industry. The details are shown as follows: 

Setting eight tapping holes (O), four pouring-iron holes (D) 
and 20 transportation tasks (N) whose related parameters 
including ID, stations of tapping hole s(0,1,…,6,7) and 

pouring iron hole d(0,1,2,3), the earliest time ia  and latest 

time ib  to implement task, the operation time of loading il  

and pouring ip . The specific data as shown in table 2.  

The parameters related to torpedo car is ID, the earliest 
time A and latest time B, where V=5, A=0, B=2000.   

The travel time is classified four classes, called1T , 2T , 3T , 

4T  representing the time from park to tapping hole, pouring 
iron hole to park, tapping hole to pouring iron hole and 
pouring iron hole to tapping iron respectively. The specific 
data are shown in table 3. 

TABLE II  .PARAMETER OF TRANSPORTATION. 

ID s d a b l p 
1 1 3 817 1027 53 46 
2 5 3 868 1085 36 51 
3 4 1 982 1200 40 40 
4 7 2 986 1191 38 38 
5 1 0 52 283 48 59 
6 7 2 182 430 31 55 
7 4 3 470 713 47 36 
8 4 2 856 1092 51 42 
9 2 2 793 1026 54 37 
10 1 2 701 929 34 40 
11 6 0 52 270 51 30 
12 7 1 968 1209 4 48 
13 2 1 122 334 44 58 
14 0 1 462 681 40 35 
15 5 0 645 885 44 44 
16 6 0 369 581 42 38 
17 0 3 97 338 45 59 
18 3 2 188 413 57 44 
19 2 1 942 1146 53 53 

20 3 0 722 971 51 50 

TABLE III  .TRAVEL TIME FROM PARK TO TAPPING HOLES BY 
EMPTY TPC. 

Tapping 
hole 

0 1 2 3 4 5 6 7 

Time 37 40 38 22 28 26 35 36 

TABLE IV  .TRAVEL TIME FROM POURING IRON HOLES TO PARK BY 
EMPTY TPC. 

Pouring iron 
hole 

0 1 2 3 

Time 32 45 33 37 

TABLE V  .TRAVEL TIME FROM TAPPING HOLES TO POURING IRON 
HOLES BY HEAVY TPC. 

Tappin
g  
Pouring             

0 1 2 3 4 5 6 7 

0 51 40 56 52 56 48 35 34 
1 50 54 50 44 44 49 42 60 
2 48 43 55 33 31 48 54 49 
3 33 55 34 46 48 57 37 44 
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TABLE VI  .TRAVEL TIME FROM POURING IRON HOLES TO TAPPING 
HOLES BY EMPTY TPC. 

Tappin
g  
Pouring             

0 1 2 3 4 5 6 7 

0 39 34 34 30 39 27 36 21 
1 32 37 35 26 34 24 28 39 
2 24 20 31 21 37 22 26 34 
3 35 36 30 31 33 20 31 31 

IV.  COMPUTATIONAL RESULTS 

The model is then solved by CPLEX to obtain the scheme 
as follow:  

The first torpedo car: 0,11 1x = , 11,14 1x = , 14,9 1x = , 9,4 1x = , 

4,0 1x = ; The second torpedo car: 0,17 1x = , 17,20 1x = , 20,19 1x = , 

19,0 1x = ; The third torpedo car: 0,13 1x = , 13,16 1x = , 16,2 1x = , 

2,0 1x = ; The fourth torpedo car: 0,5 1x = , 5,18 1x = , 18,15 1x = , 

15,1 1x = , 1,12 1x = , 12,0 1x = ; The fifth torpedo car: 0,6 1x = , 

6,7 1x = , 7,10 1x = , 10,8 1x = , 8,3 1x = , 3,0 1x = . 

So the torpedo car scheduling schemes based on the MIP 
model is shown in figure 4.  

 

FIGURE IV. SCHEME OF THE TORPEDO CAR SCHEDULING MODEL. 

V. HEURISTIC ALGORITHM 

Academic for solving large-scale VRP generally adopts 
approximate algorithm based on heuristic [7-10]. In order to 
validate the efficacy of the model, another scheduling scheme 
is obtained by a heuristics based on the nearest neighborhood 
idea in which the earliest available torpedo car is used to 
service the un-serviced task whose tapping time is the earliest. 
The description of procedure heuristic as follows: Step 1: 
Select a task whose tapping time is the earliest. Then arrange 
available torpedo car whose time window within the earliest 
time to implement the task and add the completing time to 
lower limit of time window. Step 2: Then select an un-serviced 
task whose tapping time is the earliest and schedule a 
available torpedo car to implement the task according to step 1. 
Step 3: Repeat the step 2 until all the tasks are serviced. Step 4: 
The early car loads/pours iron firstly on the tapping/ pouring 
iron hole. 

The torpedo car scheduling schemes based on the nearest 
neighborhood idea is shown in figure 5. 

 

FIGURE V. SCHEME OF THE TORPEDO CAR SCHEDULING BASED 
ON THE HEURISTIC. 

VI.  CONCLUSIONS 

In this paper, we have proposed two torpedo car 
scheduling schemes. The value of total weighted 
accomplishment time based on MIP model and heuristic 
method is 14251 and 14265, respectively. The results reveal 
the model efficiency. 
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