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Abstract————In this paper we extend a classical SIS epidemic model 
from a deterministic framework to a stochastic one by 
introducing two random perturbations in the model for 
transmission parameter and cure parameter, and formulate it as 
stochastic differential equation (SDE) for the number of 
infectious individuals . Then we prove that this SDE has a 
unique global positive solution and establish conditions for 
extinction. So it is clear that the basic reproductive number  
for the deterministic SIS model is larger than the basic 
reproductive number  for the SDE model, which means for 
the sake of extinction of , the condition of stochastic SIS 
model may be weaker than that of the deterministic SIS model. 
The results are illustrated by computer simulations. 
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I. INTRODUCTION 

Epidemics are commonly modeled by using deterministic 
compartmental models where the population amongst whom 
the disease is spreading is divided into several classes, such as 
susceptible, infected and removed individuals. If  denotes 
the number of susceptibles and  the number of infecteds at 
time t, Then the deterministic SIS model [4] [6] can be 
described as:  

                (1) 

with , the initial total size of the 
population . Here  is a constant immigration of susceptible,  
is the per capita death rate of susceptible and infected, and  is 
the rate at which infected individuals become cured, so   is 
the average infectious period.  is the disease transmission 
coefficient, so that , where  is the average number of 
adequate contacts of an infective per day. We consider all 
newborn as susceptible, and by SIS model (1) we know total 
size of the population is 

 .                      (2)

 

If , we have ; and if ,we 

have . For the sake of simplicity, we set 

, which won’t change the conclusion of discussion in 

the paper. 

Denote the basic reproduction number of this model by 
, we can know that [3]: 

If  

If  

Suppose that some stochastic environmental factors act 
simultaneously on each individual in the population. Gray etal 
[1] discusses a stochastic SIS model by introducing a random 
perturbation to transmission coefficient  in the case that the 
total size of the population  is a constant. In this paper we 
explore the case of constant immigration  and two parameter 
perturbations both in the transmission coefficient  and the 
cure rate . 

II. A NEW STOCHASTIC SIS MODEL 

To establish the SDE model, we introduce  two random 
perturbations to model (1) for the transmission parameter and 
the cure parameter. Assume that a single infected individual 
makes  potentially infectious contacts with each other 
individual in the small time interval , and makes  
cured patients in the same time. Moreover, 

 

            (3)

 

Here  and  are the increment of a standard 
Brownian motion [2]. So that , , 

 where . 

Replacing ,  in deterministic SIS model (1) by  
and , we get the following SDE SIS model:  

 (4) 

Note that total size of the population  is 
the same as in equation (2), it is sufficient to study the SDE for 

:        
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        (5) 

III.  EXISTENCE OF UNIQUE POSITIVE SOLUTION 

Theorem 3.1. For any given initial value 
, the SDE (4) has a unique global positive 

solution  for all  with probability one, 
namely  

 

Proof. Regarding equation (4) as an SDE on , we see 
that its coefficients are locally Lipschitz continuous [7]. It is 
known that for any given initial value  , there is 
a unique maximal local solution   on  , 
where  is the explosion time. Let  be sufficiently large 
for . For each integer , define the 
stopping time  

 

where throughout this paper we set  (as usual, 
 the empty set). Clearly,  is increasing as . Set 

, whence  a.s. If we can show that 
 a.s., then  a.s. and  a.s. 

for all . In other words, to complete the proof all we need 
to show is that  a.s. [2]. 

If this statement is false, then there is a pair of constants 
 and  such that  

 

Hence there is an integer  such that 

                               (6) 

and  

 

Define a function  by 

 

By the  formula [2],  we have,  for any  and 
, 

          (7) 

where  is defined by 

 (8) 

It is easy to show that 

       (9)

 

where , 

,  . 
Substituting (9) into (7) , and set , we get 

 

The Gronwall inequality [2] yields that 

       (10) 

Set   for  . By (6) , we have 
. Note that for every  , there is at least one 

of  equals either  or  , and hence  

 

It then follows from (10) that 

 

Letting  leads to the contradiction 

 

So we must therefore have .a.s.  Hence the proof 
is complete. 

IV. EXTINCTION 

Theorem 4.1. Set  

 

If  

                              (11) 

then for any given initial value  , the 
solution of the SDE (5) obeys 
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(12) 

namely,  tends to zero exponentially almost surely. In 
other words, the disease dies out with probability one. 

Proof.  By the  formula [2], we have 

   (13) 

where  is defined by  

 (14) 

However, under condition (11), we have 

 

It then follows from (13) that 

(15) 

This implies 

 (16) 

and since 

 

by the large number theorem for martingales [2], we have  

. 

We therefore obtain the desired assertion (12) from (16). 

It is useful to observe that in the classical deterministic SIS 
model (1),  tends to 0 if and only if ; while in the 
SDE SIS model (4),  tends to 0 if    and  

. In other words, the conditions for  become 
extinct in the SDE SIS model may be weaker than in the 
deterministic SIS model. The following example illustrates 
this result more explicitly.  

Similarily，we can prove the follwing result for the case 
 . 

Theorem 4.2. If  

 (17) 

then for any given initial value  , the 
solution of the SDE (5) obeys  

  (18) 

namely,  tends to zero exponentially almost surely. In 
other words, the disease dies out with probability one. 

Example 4.1. Throughout the paper we shall assume that 
the unit of time is one day and the population sizes are 
measured in units of 1 million. Assume that the system 
parameters are given by  

 

 

So the SDE SIS model (5) becomes  

(19) 

where . 

Noting that 

,  

and . We can therefore 
conclude, by Theorem 4.1, that for any initial value 

  the solution of (19) obeys  

 

That is,  will tend to zero exponentially with 
probability one. 

On the other hand, the corresponding deterministic SIS 
model (1) becomes 

. 

Since , it is known that, for any initial value 
,this solution has the property 

 

That is, deterministic  will not tend to zero (see Figure 
1). Namely when  extincts in the SDE SIS model ,  
doesn't extinct in the deterministic SIS model. 
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(a)                               (b)  

FIGURE I.  SIMULATION OF EXAMPLE 4.1. THE NUMERICAL 

METHOD IS EULER SCHEME WITH TIME STEP . THE 
FULL LINE DENOTES STOCHASTIC, THE DOTTED LINE DENOTES 

DETERMINISTIC. 

Example 4.2. We keep the system parameters the same as 
in Example 4.1 but let , ,so the SDE SIS 
model (5) becomes  

 (20) 

where . 

It is easy to verify that the system parameters obey 
condition (17). We can therefore conclude, by Theorem 4.2, 
that for any initial value , the solution of 
(20) obeys  

 

That is,  will tend to zero exponentially with 
probability one. The computer simulations shown in Figure 2 
support these results clearly. We conclude that when  
increase from 0.045 to 0.095,  increase from 0.04 to 0.09,  it 
will accelerate the speed of SDE SIS model tends to 0. 
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(a)                                     (b)  

FIGURE II.  SIMULATION OF EXAMPLE 4.2. THE NUMERICAL 

METHOD IS EULER SCHEME WITH TIME STEP . THE 
FULL LINE DENOTES STOCHASTIC, THE DOTTED LINE DENOTES 

DETERMINISTIC. 
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