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Abstract— n this paper we extend a classical SIS epidemic model
from a deterministic framework to a stochastic one by
introducing two random perturbations in the modd for
transmission parameter and cure parameter, and formulate it as
stochastic differential equation (SDE) for the number of
infectious individuals I(¢). Then we prove that this SDE has a
unique global positive solution and establish conditions for
extinction. So it is clear that the basic reproductive number R}’
for the deterministic SIS model is larger than the basic
reproductive number R for the SDE model, which means for
the sake of extinction of I(¢), the condition of stochastic SIS
model may be weaker than that of the deterministic SIS model.
Theresultsareillustrated by computer simulations.
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. INTRODUCTION

% > N, which won't change the conclusion of discussion in
the paper.

Denote the basic reproduction number of this model by
R = BA/[u(p + 7)), we can know that [3]:

If R < 1,limy o I(t) = 0.

If RY > 11imyo o I(8) = 2 (1 - R%) .

Suppose that some stochastic environmental factors act
simultaneously on each individual in the population. Gray etal
[1] discusses a stochastic SIS model by introducing a random
perturbation to transmission coefficiein the case that the
total size of the populatioN (¢) is a constant. In this paper we
explore the case of constant immigratiArand two parameter
perturbations both in the transmission coefficigrand the

Epidemics are commonly modeled by using deterministi€!™® ratey.

compartmental models where the population amongst whom 1.
the disease is spreading is divided into several classes, such as

susceptible, infected and removed individualsS(¢) denotes

the number of susceptibles al(¢) the number of infecteds at
time t, Then the deterministic SIS model [4] [6] can be

described as:

a5 — N — BS(O)I(t) +~I(t) — uS(2),

1)

D — BSHI(t) — (n+7)I(t),

with S(0) + I(0) = N, the initial total size of the
population . HereA is a constant immigration of susceptikyie,

A NEW STOCHASTICSISMODEL

To establish the SDE model, we introduce two random
perturbations to model (1) for the transmission parameter and
the cure parameter. Assume that a single infected individual
makes31dt potentially infectious contacts with each other
individual in the small time interv{t, ¢ + dt), and makesy,dt
cured patients in the same time. Moreover,

/31(11‘ . /ﬂlt 01 Oy dBl(lL)
wdt ) T\ ~dt + o3 04 dBs(t) A3)
Here B, (t) and By(t) are the increment of a standard
Brownian motion [2]. So theE(Sdt) = pdt, E(y1dt) = ~dt,

is the per capita death rate of susceptible and infectery &nd
the rate at which infected individuals become cured /y0is  Cov (
the average infectious perios.is the disease transmission
coefficient, so thag = L( where)\ is the average number of Replacingjdt, vdt in deterministic SIS model (1) k3;dt
adequate contacts of an infective per day. We consider a#hd ~dt, we get the following SDE SIS model:

newborn as susceptible, and by SIS model (1) we know total
size of the population is

Prdt =yyTdt wherey — [ 71 72 ),
Y1dt - 03 04

AS(t) = [A — BS)I(t) + vI(t) — pS(t))dt — I(t)(01S(t) — 05, 025(t) — 04) ( :%18; >

A—elos(A—uN)—ut
# : )

If & >N, we haveN < N(t) < 4;
have% < N(t) < N. For the sake of simplicity, we set

dI(t) = [BS(OI() — (1 + ) IOt + ()01 S(t) — 03, 025(t) — 01) ( dBy(1) )

N(t) = S(t) + I(t) = dBs(t)

4
Note that total size of the populatiN (t) = S(¢) + I(t) is

the same as in equation (2), it is sufficient to study the SDE for

I(¢):

and if% < N ,we
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dI(t) = I()[B(N(t) — I(t)) — (n+ 7y)]dt - LV < u}rw + 285 + (02 + 02)S® + 02 + 0] G +12)
I(t N(t) = I(t)) — o3, 09(N(t) — I(t)) — 0, ! )
+I()(o1(N(t) = 1(1) — 03, 02(N () = I(1)) ””( dBs(t) (5) +2A5 +29ST + (07 + 03)S*I* + (05 + 07)I°
1 - . . o\ o
Cy 5+ 1%) +2AK + 2yK*? 2 4 52)K28?
[ll. EXISTENCE OF UNIQUE POSITIVE SOLUTION =G (I " ) AR (i )k
Theorem 3.1. For any given initial value GV + G ©)

5(0),1(0) € (0,N), the SDE (4) has a unique global positive
solution(S(t), I(t)) € R for all t > 0 with probability one,
namely

whereCi = [(i41) V(23K + 05+ o) + (o} + 03 K* + 3 + o]

Cy=CyV[(o? +02)K? Cy = 270k + 27K>

P{(S(t),I(t)) € Ri for all t >0} =1. Substituting (9) into (7) , and sCy = max{C5, C3}, we get

Proof. Regarding equation (4) as an SDER’nwe see E‘"’(S(fATk)-I(fATA-))S"'(SOJU)‘*'E'/U " [CaV(S(5), I(5)) + Calds
that its coefficients are locally Lipschitz continuous [7]. It is

known that for any given initial val.Sy, Iy € (0, N) , there is

a unique maximal local solutiq(S(¢),1(t)) ont e (0,7),

whereTe is the explosion time. Lékg > 0 be sufficiently large
for 1/ko < So, Ip < ko. For each integek > kq, define the

stopping time
7 = nf{t €[0,7.) : min{S(t), I(t)} <1/k or max{S(t),I(t)} >k},

where throughout this paper we inf ) = co (as usual
() = the empty set). Clearl, is increasing ak — oco. Set

Too = limy_, o 7, Whencer,, < 7. a.s. If we can show that

Teo = 00 &.8., therr, = 0o a.s. ancS(t), I(t) € (0, N(t)) a.s.

for all ¢ > 0. In other words, to complete the proof all we need

to show is thar,, = o a.s. [2].

tATE
<V(So.Io) + Ca(t A7) + E / [CaV(S(s).I(s))]ds
JO

T
<V (So.Io) + CaT +Cy | EV(S(s A7), I(s A7y))ds
Jo

The Gronwall inequality [2] yields that

BV(S(t A), It Amr)) < [V(So, Lo) + CaTle“ . (10)

Set Q. ={rn<T} for k>k . By (6) , we have

P(§) > e. Note that for everw € Q. , there is at least one
of S(7,w),I (1, w) equals eithel /k ork , and hence

V(S (7, w), I(,w)) > (262 + %).

If this statement is false, then there is a pair of constants !t then follows from (10) that

T > 0 ande € (0, 1) such that
Pl <T} > e

Hence there is an integk, > kq such that

P{r, <T}>¢ for all k > k;

(6)
and
N(t) :== S(t) + I(t) < max{N, %} =K

Define a functiorV : R3 — R4 by

V(S.I)=134+1?+ 52
By thelto formula [2], we have, for ant € [0,7]and
k> Ey,
EV(SEATL), ItAT)) = ""'(S[),[<])+E/O LV (S(s),I(s))ds )
whereV : R? — R is defined by
v = (—[—12 + 21) BSI = (1 + 1)) + Pl(01S — 05)2 + (925 — 00) <% + 1>
+28 (A = BST +~I — uS) + I*[(01S — 03)* + (725 — 04)%). (8)

It is easy to show that
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[V(So, Io) + C4T)e“T > Ellg, (w)V(S(7, w), I(h,w))]
> (2K + %)P(m)

5 1

Lettingk — oo leads to the contradiction
o0 > [‘/(So,l()) + C4T]€C4T = 00.

So we must therefore hars, = oc.a.s. Hence the proof
is complete.

IV. EXTINCTION
Theorem 4.1. Set

RS gp_ (CEToDN?  oitai | (103t own)y
2(p+7) 2(p+7) Bty

_ BA (02 +03)N?  o2+02 (0103 +0204)%

e +7) 2(p+7) 2(n+1) Bty
If

: . . B

Ry <1 and o+ o3 < T

A (11)

then for any given initial valul(0) = I, € (0,N), the
solution of the SDE (5) obeys



limsup%log,(l(/)) < 'j—‘l\—u—ﬂ,—().S(Uerrfﬁg))A\"“)—().5(a§+rf,f)+(mmﬁnym)% Similarily, we can prove the follwing result for the case
t—o0 S
<0 as. (12) RO <1.

. Theorem 4.2. If
namely, I(t) tends to zero exponentially almost surely. In

other words, the disease dies out with probability one.

N 3u v B(3 + 0103 + 0204) + (0103 + 0204) (3 + 0103 + 0204)
A

Ry <1 and of+03>(—
Proof. By thelto formula [2], we have l et (; I >(17)

. then for any given initial valud(0) =1, € (0,N) , the
(1) = log(ho) + | 1(1(9).)ds solution of the SDE (5) obeys

- _— 1B,(s)
+/0(<71[4\(5)*1(5)]*ﬂm 2N (s) = I(5)] = 4 )(;B;g) ) 13)

1
limsup — log(I(t))
t—oo T

wheref : Ry x R — R is defined by < p—n+t ‘f(’+ﬂzw:xtﬂzm) + (0105 + 0a0g) ZF T8 H 0200 o
of + 03 i+ 03 (18)
Ft) = BN() = = Bz — 03[0y (N(1) — 2) = 03]° — 05003 (N (1) — 2) — 4]* (14) namely, I(¢) tends to zero exponentially almost surely. In

other words, the disease dies out with probability one.

However, under condition (11), we have Example 4.1. Throughout the paper we shall assume that

J(I(s),8) = BN(s) = jt =7 = BI(s) = 0.5(07 +03) (N (s) — I(5))* the unit of time is one day and the population sizes are
= 0.5(03 + 03) + (0103 + 0204) (N(s) = I(5)) measured in units of 1 million. Assume that the system
=BN(s)—p—~— (B~ (0} +02)N(s)I(s) — 0.5(cF + 02)(N(s))? parameters are glven by
—0.5(0% + 03)1(s)* — 0.5(0% + 03) + (0103 + g204) (N(s) — I(s)) 05 A = 2000. N — 60. 1 — 20.~ — 95
<BA L —05(0% 4 02)N? — 0.5(02 + 02) + (0103 + 7204) > < 0 B=05A= V=00 =207 =2

! ! o1 = 0.045, 09 = 0.04, 03 = 0.03, 54 = 0.035

It then follows from (13) that
So the SDE SIS model (5) becomes

log(I(t)) < log(lo) + (% — =7 =0.5(0% +03)N* = 0.5(03 + 07) + (0105 + azm)‘/—» t AT(t) = I(H)[0.3N () — 0.51() — 45)dt
+,/(;l( ilN(s) = L)) ~ o3, oalN(s) ~ I(s)] - o4 )( :Z?Es; > (15) + () ( 0.045[N(t) — I(1)] — 0.03, 0.04[N(t) — I(t)] - 0.035 ) ( Zglgi )(19)
This implies whereN (t) = 100 — 0.05¢1°8 50020t
]i:lizl(lp%log(l(l)) Noting that
< % —j= 7 = 0.5(0% + 02N? = 0.5(0% + 03) + (0103 +agal)% RS = #(:l - (a;; iﬁ)l)\z _ ;(ZLTTE) N (0'1(73‘u++17j0'/1>% 0.9722 < 1»

imsu)l [ o1[N(s) = I(s)] — o3 09[N(s)—I(s)] — o4 dB (s) a.s. .
+timsup [ (AN ~ 1) =o N~ 161 ) ((g5its) ) (16)  and o? + 02 = 0.0036 < 2% = 0.005 . We can therefore

conclude, by Theorem 4.1, that for any initial value

and since I(0) = I € (0,60) the solution of (19) obeys
. 1 [t . . . . 1
llfnsup n / {(o7 + )N (s) = I(s)]* + (0 + 03) }ds <00 as. lim sup n log(I(t)) < —1.2511 a.s.
L —r00 J0 t—oo

That is, I(t) will tend to zero exponentially with
by the large number theorem for martingales [2], we have probability one.

Hmsupl/[( [N(s) = I(s)] — 03, 02N (s) — I(s)] — o4 )(dBl(%) ) —0- On the other hand, the corresponding deterministic SIS
st Jo dBs(s)
model (1) becomes
We therefore obtain the desired assertion (12) from (16). dI(t) = I(#)[50 — 0.025¢°5300-200 _ ¢ 57() _ 45)dt.
It is useful to observe that in the classical deterministic SIS~ o o
model (1),/(t) tends to O if and only iR} < 1; while in the Since Rf’ > 1, it is known that, for any initial value

SDE SIS model (4)(t) tends to 0 if RS <1 and 1(0)=1Io€ (0,60)this solution has the property

o} + a3 < L& In other words, the conditions fI(t) become . A 1

extinct in the SDE SIS model may be weaker than in the Am 1) = - <1 - RT))) =10

deterministic SIS model. The following example illustrates ) L ] )
this result more explicitly. That is, deterministiZ(¢) will not tend to zero (see Figure

1). Namely wher!(t) extincts in the SDE SIS modell(¢)
doesn't extinct in the deterministic SIS model.
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@I(0)=1 (tI(0) =50
FIGURE I. SIMULATION OF EXAMPLE 4.1. THE NUMERICAL

METHOD IS EULER SCHEME WiTH TIME STER = 0.001 1pe
FULL LINE DENOTES STOCHASTIC, THE DOTTED LINE DENOTES
DETERMINISTIC.

Example 4.2. We keep the system parameters the same
in Example 4.1 but leo; = 0.095, o5 = 0.09,s0 the SDE SIS
model (5) becomes

dI(t) = I(1)[0.5N(t) — 0.51(t) — 45]dt

dB(t)

+ (1) ( 0.095[N(t) — I(t)] - 0.03  0.09[N(¢) — I(t)] - 0.035 ) ( dBa)

) " (20)
whereN (t) = 100 — 0.05¢!08 800-20¢,

It is easy to verify that the system parameters obey
condition (17). We can therefore conclude, by Theorem 4.2,
that for any initial value/(0) = I € (0,60), the solution of
(20) obeys

1
lim sup i log(I(t)) < —30.049 a.s.

t—o0o
That is, I(¢t) will tend to zero exponentially with
probability one. The computer simulations shown in Figure 2
support these results clearly. We conclude that wspn
increase from 0.045 to 0.095, increase from 0.04 to 0.09, it
will accelerate the speed of SDE SIS model tends to 0.
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@I(0)=1 (I(0) =50
FIGURE II. SIMULATION OF EXAMPLE 4.2. THE NUMERICAL

METHOD IS EULER SCHEME WIiTH TIME STER = 0.001 e
FULL LINE DENOTES STOCHASTIC, THE DOTTED LINE DENOTES
DETERMINISTIC.
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