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Abstract--This paper used random forest method to produce 
susceptibility analysis for earthquake-induced landslides. A 
landslide susceptibility model was built based on random forest 
method and data of environment variables and Newmark 
displacement. Landslide susceptibility mapping and attributes 
evaluation was also preformed. This model was tested in 
Pingwu County of Sichuan Province. The results show that the 
random forest method provides better accuracy on landslide 
prediction, and also shows smoother characteristic on the 
distribution of the landslide susceptibility when compared to 
wildly used regression models. The results confirm that the 
random forest method can be performed as an effective 
approach for landslide susceptibility evaluation and mapping. 
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I INTRODUCTION 

Asia has the highest landslides risk around the globe [1], 
and landslides are responsible for a considerably large 
property damages and human casualties [2]. Landslide can 
be induced by various environmental factors which tend to 
have complex and compound relationships. One of the most 
prominent features of earthquake is triggering landslides, 
especially in the mountainous areas. Earthquake-induced 
landslides usually have the characteristics of large-scale, 
clustering in spatial and continuity in temporal. How to 
effectively evaluate the landslide susceptibility is one of the 
major focus in disaster prevention and reduction, and also a 
challenge in post-earthquake recovery and reconstruction. 

Landslide susceptibility analysis is a combined 
qualitative and quantitative analysis of the spatial 
distribution of existing or potential landslides [3]. There are 
three major landslide susceptibility models including 
heuristic, statistical, and physically based models [4]. The 
majority of landslide susceptibility analysis and mapping 
research relies on statistical models [5-7]. These researches 
mainly focused on the application of different statistic 
inference to reveal the relationship between spatial 
distribution of landslides and environmental factors. For 
example, Beaze used multiple linear regressions to analyze 
shallow sliding, and pointed out that the dominant factors 

are slope and vegetation coverage [8]. Logistic regression is 
a popular and convenient approach in landslide 
susceptibility mapping [9-11], and behaved relatively well in 
exploring major affecting factors [12, 13]. Duman et al [14] 
also used Logistic regression in landslide susceptibility 
zoning, and indicated that geological conditions have 
important impact on the occurrence of landslides. 

Lacking complete landslide inventory, statistics methods 
remain to be the important approach to evaluate landslide 
hazard and generate susceptibility mapping. The landslides 
induced by major earthquakes (i.e., Wenchuan earthquake) 
often show contingency and complexity characters and 
relationships between landslides and environment factors 
may not be captured by traditional regression approaches. 
Different from existing literature, we used random forest 
algorithm to analyze the susceptibility of earthquake-
induced landslides and investigate the dominant affecting 
factors. The susceptibility map generated by using the 
random forest method was also compared with that using the 
logistic regression. 

II  STUDY AREA AND DATA 

The study area is located in Nanba-Shuiguan in Pingwu 
County, Mianyang, Sichuan. This area lies approximately 
180 kilometers northeast to the 2008 Wenchuan earthquake 
epicenter, and it is one of the most damaged areas during the 
earthquake. This mountainous area has elevation ranging 
from 671 to 2667 meters. The Fujiang river and Hongxi 
creek flow through the area. Figure 1 shows the basic 
geographic information of the study area. The orange 
polygons mark the location of the earthquake-induced 
landslides trigged by Wenchuan earthquake. The landslides 
information is obtained and visually interpreted by 
comparing two SPOT-5 satellite images taken before the 
Wenchuan earthquake (on September 5, 2006) and after the 
earthquake (on June 4, 2008). The landslides information is 
validated and calibrated by multiple field trips conducted 
during 2012 to 2014. 
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FIGURE 1: THE STUDY AREA AND LANDSLIDES. 

In this study we selected the following variables to 
examine the relationship between landslide and 
environmental factors: elevation (Digital Elevation Model, 
DEM), lithology, Normalized Difference Vegetation Index 
(NDVI), land-use type, vegetation type, roughness, relief 
degree of land surface (RDLS), profile curvature, and plan 
curvature. The 30 by 30 meters DEM data were used to 
compute roughness, RDLS, profile curvature, and plan 
curvature in the study area. NDVI was obtained from the 
SPOT-5 satellite image of September 5th, 2006. Lithology 
data was normalized from 1:2,500,000 geology map of 
Sichuan province. Land-use information was obtained from 
the 1:500,000 land-use map of China. Vegetation type was 
obtained from the 1:1,000,000 vegetation map of China. 
Additionally, this study used Newmark displacement caused 
by the earthquake. The calculation and detailed information 
of Newmark displacement of the study area can be found in 
the previous study of Liu [15] and Wang [16]. All the data is 
integrated into 30 by 30 meters grids for the susceptibility 
analysis. 

III  RANDOM FOREST 

The random forest algorithm is a combination of 
decision tree predictors presented by Leo Breiman [17] in 
2001. The algorithm generates multiple classification and 
regression trees (CART), and the final classification result is 
voted among all the trees in the "forest". 

The algorithm of random forest (for classification) can 
be stated as follow [17, 18]: 

1) Multiple bootstrap sub-sample sets ware random 
drawn, the process is called bagging. For each bootstrap 
procedure, the unselected samples were called OOB (out-of-
bag) data, which are used as test sample to calculate the test 
statistic of the random forest model. 

2) A CART is grown from each bootstrap subset. 

The bootstrap-CART procedure is repeated, for instance, 
500 times, and 500 CARTs are grown (the so-called 
"forest"). 

3) When a test sample or a new sample enters the forest, 
the algorithm distribute the data to each tree for 
classification. The final classification outcome is voted 
among the result of the trees. 

4) OOB sample is used as test set, and its mis-
classification ratio is calculated to evaluate the effectiveness 
of the random forest model. 

5) The randomized bagging process is designed to ensure 
higher stability. The two randomized sample process during 
sample drawn (in bootstrap) and node selection (in CART) 
ensured a higher accuracy in the classification prediction [19] 
without over-fitting the data [17]. Additionally, because a 
large number of trees are grown in the forest, the system 
error in generalization can be limited [17]. 

Shortly after the random forest algorithm was developed 
in 2001, the approach have been adopted in many different 
fields. Random forest approach shows outstanding 
performance in processing satellite and radar remote sensing 
images [20-22]. However, there are very few literatures 
involving landslide problems. Che-Wei Shen et al show that 
the random forest model can work well to identify the 
importance of factors related to mud flow triggered by 
Typhoon, while the principal component analysis cannot 
provide satisfactory results [23]. Catani et al [24] used the 
random forest algorithm to investigate the difference among 
rankings of factor importance for landslide occurrence at 
various spatial scales, which is one of the few studies on 
landslides using random forest. 

IV  SUSCEPTIBILITY MODEL AND RESULTS 

In the study area, the data sample is generated from 
420,336 grids, and only 2.4% of the total grids have 
landslides. Therefore, this study uses all landslide grids and 
randomly drawn partial non-landslide grids as the impute 
data for random forest model. The selection of non-landslide 
data uses ARCMAP automatic spatial random sampling tool 
to ensure that the data is collected randomly in space. The 
random forest model is computed using CoreLearn package 
in R program. 

A. Data Imbalance 

In general treatment of analysis imbalanced data samples, 
the ratio between landslide data and non-landslide data is 
fixed at 1:1. But for disaster research, the number of disaster 
sample is extremely limited. Thus, before determine the 
sample ratio between landslide and non-landslide data, this 
study will briefly discuss how different sample size ratio 
might affect the model final results. 

The sample size of landslide data is fixed, and non-
landslide data set is drawn separately with the sample size 
ratio at 1:1, 1:1.5, 1:2 and 1:5. Random forest models are 
executed for each data set to compare model accuracy.  

In the Table 1, accuracy is defined as the percentage of 
correct classification over all sample. Specificity (also called 
true positive rate) is defined as the percentage of correctly 
classified landslide sample. Sensitivity (also called true 
negative rate) is defined as the percentage of correctly 
classified non-landslide sample. The result shows that, the 
ratio of non-landslide sample is definitely affecting the 
model prediction accuracy. When the ratio of landslide 
sample decreases, although the model overall accuracy 
increases, the classification accuracy on landslide is getting 
worse. The increasing overall accuracy is at the cost of 
decreasing classification accuracy of the landslide sample, 
because the model is overwhelmed by the increasing ratio of 
non-landslide sample. Since this study focused on a better 
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identification of the susceptibility of landslides, rather than 
only compare model overall accuracy, model specificity 
(which shows the accuracy on identify landslide samples) 
must be taken into consideration as an importance 
measurement. 

TABLE I. RANDOM FOREST MODEL ACCURACY UNDER 
DIFFERENT SAMPLE SIZE RATIO.(IN PERCENTAGE). 

Sample size ratio 1:1 1:1.5 1:2 1:5 

Accuracy 95.0 95.4 95.5 97.4 

Specificity 98.0 97.2 96.0 90.8 

Sensitivity 92.0 94.2 95.3 98.6 

B. Cost Matrix 

To deal with the effect of imbalanced data on machine 

learning, Nguyan [25] introduced the concept of cost matrix. 
It is designed to reduce the accuracy "bubble" caused by 
imbalanced data. Based on the landslide problem in this 
study, the mis-classification of a landslide sample is given a 
higher cost than a non-landslide sample. The CARTs is 
optimized upon the cost matrix, so that the model total 
"cost" will be minimized. The question of how to design the 
cost ratio is still debatable among researchers, Margineantu 
[26] suggested that the cost ratio should be reciprocal of the 
sample size ratio, but Hand [27] suggests that the reciprocal 
ratio is only a convenience approach which does not on the 
ground describe the severity of misclassification. 

Thus, this study applies 2 cost matrix on each sample 
ratio, and compare the model prediction accuracy (Table 2). 

TABLE II. RANDOM FOREST MODEL ACCURACY UNDER DIFFERENT SAMPLE SIZE RATIO AND DIFFERENT COST MATRIX.(IN PERCENTAGE). 

Sample 
and cost 
matrix 
ratio 

sample
1:1 
cost2:1 

sample
1:1 
cost5:1 

sample1:
1.5 
cost2:1 

sample1:
1.5 
cost5:1 

sample
1:2 
cost2:1 

sample
1:2 
cost5:
1 

sample1
:5 
cost2:1 

sample
1:5 
cost5:
1 

Accuracy 94.89 94.98 95.36 95.44 95.51 95.52 97.34 97.37 

Specificity 97.93 97.96 97.24 97.04 95.89 96.05 90.89 91.07 

Sensitivity 91.85 92.00 94.11 94.04 95.32 95.25 98.64 98.63 

 

Unfortunately, the cost matrix only has a miner 
improvement on specificity for various sample ratios. The 
reason can be that the model without cost matrix already 
have a considerably high prediction accuracy, the 
misclassification ratio of landslide sample have always 
under 10% for all models. Therefore, the effect of cost 
matrix do not have a distinctly difference on the prediction 
results. 

C. Model and Results 

The final model chooses the landslide and non-landslide 
sample set with 1:2 ratio, and no cost matrix is used. The 
random forest model is built using R program and 
CoreLearn package. The model prediction accuracy result is 
shown in Table 3. The overall model accuracy is 92.79%, 
and area under ROC curve reaches 0.9935. 

TABLE III. RANDOM FOREST MODEL OOB ERROR AND 
PREDICTION MATRIX. 

OOB error：7.21% 

prediction matrix 

 No Yes Error rate 

No 19324 1408 0.0679 

Yes 833 9533 0.0804 

All samples are calculated through the random forest 
model, and in the total 420,336 samples, only 32,460 

samples are mis-classified, and the model overall accuracy 
reaches 92.4%. Among all the mis-classified data, only 417 
of them are landslide samples, that means only 4% of 
landslide samples are mis-classified. The earthquake-
induced landslide susceptibility mapping is composed by 
ARCGIS, Figure. 2. Figure 2 shows the values of the 
landslide susceptibility calculated by the random forest 
model. The red color denotes high susceptibility of 
landslides, and these locations are most sensitive toward 
external perturbation. 

 
FIGURE II. LANDSLIDE SUSCEPTIBILITY (RANDOM FOREST 

MODEL). 

For all the sample size and cost matrix combinations 
studied above, the factor importance ranking stays the same 
through all models. Lithology is the factor with the foremost 
importance, followed by distance to fault zone, vegetation 
type, and land-use type, also elevation, RDSL and Newmark 
displacement , Figure. 3.  
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FIGURE III. IMPORTANCE RANKING OF ENVIRONMENTAL 

FACTORS. 

VDiscussions 

A. Result of Susceptibility Analysis of Earthquake-Induced 
Landslide 

The result of the 92.4% overall accuracy of all sample 
illustrates that the random forest method can provide a very 
accurate classification. The model gives even more accurate 
result on landslide samples, and the mis-classification 
sample is concentrated in the non-landslide samples. 
Considering the random forest algorithm is design to resist 
model over-fitting, it is reasonable to imply that the mis-
classification of non-landslide sample is not entirely 
contributed by system error. The mis-classification suggests 
that numerous non-landslide samples have the similar 
characteristic as the landslide samples. Those non-landslide 
samples have high susceptibility indicate that the 
corresponding grids have relatively high potential of 
landslide occurrence. Although landslides did not occur 
during the Wenchuan earthquake, those high susceptibility 
areas should be monitored for a longer term in the future 
study. 

B. Choice over Cost Matrix 

Although cost matrix does not show a significant 
improvement on the results in this study, the method should 
still be taken serious consideration in the future study. Weiss 
[28] compared over-sample, under-sample and cost matrix 
under different data sets, and the result shows inconclusive 
on the optimal approach. The tests in this study suggest that 
the effect of cost matrix may be significant when relatively a 
large positive samples (i.e., landslide samples) can be 
obtained. 

C. Comparison with Logistic Regression Model 

Wang and Liu [15, 16] used Logistic regression model to 
analyze the landslide susceptibility in the same study area. 
The logistic regression model has a 81.2% overall prediction 
accuracy. The corresponding susceptibility map is shown in 
Figure. 4. 

 
FIGURE IV. LANDSLIDE SUSCEPTIBILITY -- LOGISTIC 

REGRESSION. 

Comparing the two susceptibility maps (Figure. 2 and 
Figure. 4), the earthquake-induced landslide susceptibility 
shows a similar spatial distribution trend. However, the 
accuracy is improved significantly by the random forest 
model. Furthermore, the Logistic regression model shows 
highly sensitive over the lithology pattern. The belt shape 
pattern of susceptibility in Figure. 4 is the consequence of 
lithology variation. Although lithology also has the highest 
ranking of importance in the random forest model, the 
susceptibility map shows a smoother pattern and does not 
severely influenced by the distribution of lithology 
especially at the class boundaries. 

On the other hand, the factor importance ranking is 
slightly different between two approaches, but maintains 
certain consistency. Lithology has the highest importance in 
both models. Land-use type, Newmark displacement and 
DEM are factors with high importance in both models. 

VI  CONCLUSIONS 

Landslide susceptibility analysis and mapping can 
significantly contribute to regional disaster evaluation and 
disaster prevention. This study discussed the usage of 
random forest approach in landslide analysis, and its 
applicability on susceptibility mapping. The result is 
consistent with traditional regression approach, but more 
accurate in model prediction and smoother in pattern 
mapping. This study confirms that the random forest method 
is an effective approach in landslide susceptibility analysis 
and mapping. 

To better understand the disaster mechanism for 
secondary disasters after Wenchuan earthquake, the future 
studies can focus on the non-landslide areas but with high 
susceptibility values. More detailed classification and 
continuous observation will be conducted to establishing a 
quantitative relationship between susceptibility and newly 
evolving landslide or landslide expansion in the future 
research. 
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