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Abstract--Due to the complexity in respiratory signals, an 
experienced coder is often required to identify the acceptable 
cycles and mark the start and end times for each cycle. This 
algorithm is an important step toward timely identification and 
coding of more complex respiratory signals and more efficient 
analysis for physiological signals. Simulation results have shown 
that the proposed algorithm can identify cycles correctly and 
efficiently. 
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I INTRODUCTION 

Analysis of the speech breathing signals typically involves 
automatic cycle detections in the waveforms [1]. Although 
some algorithms are available to isolate specific frequencies of 
interest in a given waveform [2, 3], in the case of physiological 
behavior, rate measurements are often used as summary 
statistics of the waveforms. Unfortunately, cycle-averaging 
techniques are often inadequate when it comes to describing 
complex behaviors, particularly when that behavior changes 
over time, e.g., breaching behaviors during speech [4]. 
Consequently, an experienced coder who can evaluate each 
cycle of a given waveform is often required to determine which 
cycles are acceptable for analysis and manually separate cycles. 
It is time consuming to separate cycles by human visual coding 
and measurements. A previous study in [5] provided an 
algorithm capable of automatically identifying cycles in tidal 
breath signals. The algorithm used filtering and other signal 
processing techniques via Matlab programming [6], producing 
the exact start and end times for each cycle and isolating the 
distorted cycles due to artifacts, such as motion. It also isolated 
those portions of the signals negatively impacted by the 
artifacts. As a continuation of the previous study, this paper 
extends the cycle identification algorithm to speech signals and 
automatically detected speech breathing cycles across a variety 
of humans. Simulations have shown that the proposed 
algorithm identifies the breath cycles correctly and efficiently, 
despite the complexity of speech breathing signals. The 
algorithm will help researchers and clinicians identify and 
analyze cycles associated with speech breathing in much less 
time than if a human coder is used. 

II  SPEECH BREATHING SIGNALS AND DATA COLLECTION 

SCHEMES 

Speech breathing contains a two-phase mechanical process. 
During the inspiratory phase, passive mechanical forces and 
active muscle forces draw air into the lungs. During the 
expiratory phase, passive and active forces interact by sending 
the tracheal air through the larynx, thus producing the fluid 
stream needed for phonation. To deliver effective speeches, a 
speaker must coordinate not only the inspiratory and expiratory 
muscles, but also the thoracic and abdominal movements. The 
data in the paper, which are a subset of respiratory kinematic 
data collected for a study exploring chest wall movement 
during conversational interactions, were collected using the 
Inductotrace® system. The test subjects were twenty, 
American, English-speaking women ranging from ages 22 to 
35 (with a mean of 25 years and 4 months). As each participant 
took turns in the roles of speaker and listener, The 
Inductotrace® system produced two signals representing rib 
cage and abdomen excursions, which were digitized at a 
maximum rate of 2 kHz. This paper focuses on speech 
breathing signals for each participant in the role of speaker. 

A. Examples of Speech Breathing Signals 

Fig. 1 highlights the components (respiratory magnitude 
and respiratory duration) used to properly determine the start 
times, and identify cycles. Fig. 2 shows the difference in 
behavior between speech breathing signals and tidal breathing 
signals. As can be seen, tidal signals appear smoother, thus 
easier to break down into cycles, whereas speech signals 
appear to have subcycles, later identified as undesired cycles in 
this paper. The phenomenon is caused primarily by motion 
from the test subject during the experiment. 
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FIGURE I: EXAMPLE OF INDIVIDUAL SPEECH BREATHING, START 

AND END OF EACH CYCLE MARKED BY VERTICAL LINES. 

 
FIGURE II: EXAMPLE OF SPEECH BREATHING SIGNAL (A) AND 

TIDAL BREATHING SIGNAL (B). 

III  AUTOMATIC CYCLE IDENTIFICATION ALGORITHM 

The automatic cycle identification algorithm includes six 
steps, as shown in Fig. 3. Two tasks are accomplished: one to 
identify the cycles, and determine their exact start and end 
times; and the other to detect and isolate the distorted cycles 
that cannot be used for the purpose of respiratory signal 
analysis. To make the proposed algorithm universal to all 
respiratory speech data collected, detailed criteria have been 
used for both tasks via multiple steps. To describe the 
algorithm, the following notations are used: The uppercase 
letter M represents the total number of data samples in a speech 
breathing data file. The excursion voltage value at the m-th 
sample is denoted by Y�mτ�, 0 ≤ m ≤ M− 1, where τ  isthe 
sampling period in seconds (the sampling period in the 
analyzed data was 0.01 seconds). The total number of cycles is 
denoted by N, where subscript “A” is used to indicate the step 
and stage addressed in the proposed cycle identification 
algorithm; typical values for “A” are I, II, or III. The start time 
for the n-th breathing cycle is denoted by T�n�. The cycles are 
indexed consecutively; therefore, the start time for the n -th 
cycle is also the ending-time for the �n − 1�-th cycle. Notation 
Φ�n� represents the maximum excursion voltage value in the 
n -th cycle. The minimum values in the inspiratory and 
expiratory phases in the n-th cycle are denoted by Υ��n�and 
Υ��n�  , respectively (which are usually not identical), and 
subscripts L and R are used because the inspiratory phase is in 
the left portion of a cycle and the expiratory phase is in the 

right portion. The terms Υ��n� and Υ��n� are also referred to 
as the left and right minimum in the n-th cycle. 

 
FIGURE III: DIAGRAM OF AUTOMATIC CYCLE IDENTIFICATION 

ALGORITHM. 

A. Step I:Identificationfor all Possible Cycles 

Step I identifies all potential cycles in the speech breathing 
signals by looking for possible start-time instants via various 
processing techniques such as decimation, derivation, and 
interpolation. As done in the previous study of tidal breathing 
signals [5], derivation is used as an initial means to identify the 
start time for the potential cycles in speech breathing signals. 
This is due to the fact that, although almost periodic, the time 
duration for each cycle is not a fixed constant, and the 
excursion voltage values at the end of expiratory phases often 
have small magnitudes yet fluctuate rapidly. The signal is 
decimated by a factor of 10 (unlike previously at a factor of 30), 
and a low-pass filter is used to smooth the data. Interpolation is 
performed on the decimated respiratory signal to recover the 
original time duration. The processing techniques in Step I also 
identify a number of cycles that do not represent any normal 
speech breathing cycles, referred to as “undesired or distorted 
cycles.” Extra processing is required to correctly locate these 
cycles and remove them from the data file. This task is carried 
out in Steps III, IV, and VI. 

B. Steps Ii and V: Adjustment of Start Times for Stages 1 and 
2 

The task for these steps is to find the exact start time of 
each cycle and adjust the location of the corresponding 
identification line. The start time of a cycle is often defined as 
the time-instant at which the next inspiratory phase starts and 
whose excursion voltage has a locally mathematical minimum 
or near-mathematical minimum (referred to as a value that is so 
close to the mathematical minimum that the difference cannot 
be detected visually). Due to the high complexity of speech 
signals, a two-stage procedure is implemented in Steps II and 
V in order to perform a final adjustment on the cycle 
identification lines such that the exact start time for each cycle 
can be successfully determined. In Step II of Stage 1, we 
identify the time-instant at which the inspiratory phase starts 
and the excursion voltage increases consistently. Step II 
increases the accuracy of next task, i.e., detection and removal 
of undesired cycles. However, the start times of cycles 
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identified in Step II are often over adjusted. These offsets in 
start times often occur in situations where there are many small 
dips in the ending segment of the expiratory phases. 
Consequently, the cycle identification lines are drawn between 
these dips. In Step V, Stage 2 is introduced to undo the over 
adjustment by looking for the time-instant at which the 
previous expiratory phase ends. Detailed descriptions of the 
two stages in Steps II and V are as follows. 

1) Step II Stage 1 
The diagram for Step II Stage 1 is shown in Fig. 4. We 

search for the time-instant at which the inspiratory phase starts 
and the excursion voltage increases consistently over a certain 
number of samples. We choose 15 samples in the algorithm. 
As can be seen, the start times for some cycles identified in 
Stage 1 are slightly over adjusted from the correct desired start 
times because there is usually a small bump in the trough 
before the cycle. In Stage 1, the start time is searched such that 
all excursion voltages in the next 15 samples increase 
consistently. As a result, these small bumps are excluded from 
the current cycle’s inspiratory phase; in other words, they are 
included into the previous cycle’s expiratory phase. Further 
adjustments are performed in Step V of Stage 2. 

 
FIGURE IV:STEP II, STAGE 1, ADJUSTMENT OF START TIME FOR 

EACH CYCLE. 

2) Step VStage 2 
Step V is designed to further adjust the exact start time of 

each cycle. To undo the over adjustment in Step II, we identify 
the time at which the next inspiratory phase starts and examine 
the local minimum in the neighborhood of the trough between 
two adjacent cycles. A least squares method is introduced to 
accurately detect the valley of each cycle by calculating the 
angle factor for an n-sample back-tracked line. Fig. 5 illustrates 
the idea of a back-tracked line such that the small bumps 
cannot be ignored when determining the correct start time of a 
cycle. The value of n is controlled by a variable called back_ 
step in the algorithm.  The least squares method applied is 
described as follows: 

First, the least squares method is used to calculate the angle 
factor of the best fit straight line from the present sample to n-
samples (n_ samples_ forward=30) after it.  

If this angle factor is smaller than a certain threshold 
(angle_ forward=0.01), then this sample is discarded and the 
algorithm moves to the next sample. 

Until the algorithm reaches a point that has a large enough 
angle factor, the n-samples after this point (n_ samples=15) 
will continue to be examined if they increase continuously or 
not.  

If not, the algorithm moves to the next sample and 
calculates the angle factor after this sample again. 

If yes, this point is the start time of this cycle. The 
algorithm will move on to the next cycle. 

The least squares method is used to step over long bumps 
(thus, it uses a large number of samples, n_ samples_ 
forward=30), while the previous method is used to step over 
short bumps (thus, it uses a smaller number of samples, n_ 
samples=15). 

 
FIGURE V: STEP V, STAGE 2, BACK-TRACKED LINE. 

3) Steps III, IV, and VI: removal of undesired cycles—
criterions 1, 2, and 3 

The undesired cycles are often caused by artifacts in the 
measurement data. These cycles can be generally classified 
into two patterns, based on their locations, as shown in Fig. 6. 
Steps III, IV, and VI are proposed to remove these undesired 
cycles in each pattern using three criterions, in which various 
characteristics of the data—local maxima, minima, and slope—
are applied. 

 
FIGURE VI: TYPICAL UNDESIRED CYCLE PATTERNS. 
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After the undesired cycles are identified and removed, the 
cycles are renumbered; therefore, the index of the last cycle is 
also the total number of desired cycles in the data file. 

IV  CONCLUSION 

We developed an algorithm capable of identifying and 
isolating the quasiperiodic patterns (cycles) in speakers’ speech 
breathing signals, Despite the higher complexity in the speech 
breathing signals, the proposed algorithm not only identified 
the exact start time of the cycles but also effectively detected 
the undesired cycles. 
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