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Abstract--Latent Dirichlet Allocation (LDA) probabilistic topic 
model is widely used in text mining, natural language processing 
and so on. But LDA’s mathematical theory is particularly 
complex, thus it is very difficult to understand LDA for a novice. 
In order to more quickly and easily learn LDA, and further 
promote its application, this paper will deeply analyze LDA from 
the perspective of Bayesian parameter estimation. At first we 
explain the advantage of Bayesian parameter estimation by an 
instance, and then introduce a simple Bayesian Unigram model. 
Next based on the simple Bayesian Unigram model and PLSA 
model, a full Bayesian probabilistic topic model—LDA is 
presented. 
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I INTRODUCTION 

In text mining, natural language processing and so on, 
probabilistic topic models are receiving extensive attention. 
The probabilistic topic model can understand text from 
semantic level, while the traditional Vector Space Model (VSM) 
[1] only represents text based on the “words” or “terms” 
appeared in the documents. Under VSM, feature space is 
established according to the observed terms without any 
semantic consideration. As a result, this will obviously lead to 
deviation of the meaning of text. To address the shortcoming, 
probabilistic topic models have be proposed, which extract 
semantic topics using co-occurrence of terms in documents, 
and are used to transform documents locating in term space to 
the ones in topic space, and then enable us to obtain the 
understanding of the documents on a meaning level rather than 
by lexical congruence. 

The origin of probabilistic topic model is Probabilistic 
Latent Semantic Analysis (PLSA) [2], PLSA model based upon 
the idea that documents are mixtures of topics, where a topic is 
a probability distribution over words. The parameters of PLSA 
model are estimated by Maximum Likelihood Estimation 
(MLE) method [3]. 

But Bayesian scholars think that the unknown parameter 
should be the random variable, and have a prior distribution; 
therefore a new probabilistic topic model named LDA [4] is 
proposed. The parameters of LDA model have the prior 
distribution, and are estimated by Bayesian method. LDA 

model has attracted many scholars’ attention since its start, but 
its mathematical theory is too complex to understand quickly. 

In order to more quickly understand LDA model, and 
further promote its application, this paper will start from 
Bayesian parameter estimation, and then analyze the 
mathematical theory of LDA model from the perspective of 
Bayesian  parameter estimation. This paper is organized as 
follows. In Section 2 we introduce Bayesian parameter 
estimation based on an illustrative example. Compared to 
related PLSA model, LDA model with Bayesian parameter 
estimation is presented in Section 3. Finally, Section 4 presents 
summary. 

II  BAYESIAN PARAMETER ESTIMATION 

Bayesian parameter estimation is an important method for 
parameter estimation. The key difference between the Bayesian 
parameter estimation method and the classical parameter 
estimation method is whether prior beliefs are adopted. 
Bayesian parameter estimation method attach importance to the 
overall information and sample information, also note that prior 
information collection and collation, and make it quantitative, 
form the prior distribution, participate in statistical inference, 
so that improve the quality of statistical inference[5]. 

To illustrate the superiority of Bayesian parameter 
estimation method, an example which is a shooter experiment 
[6] is as follows: 

The shooter experiment: One player shot n times, hit r times, 
and then how to estimate the player’s hit rate according to his 
result? 

Usually to estimate hit rate θ with  
�
� , but this approach is 

flawed. For example: when n = r = 1, estimate θ� =1, but when n 
= r = 100, also estimate  θ�  = 1; and when n = 100, r = 0, 
estimate  θ� = 0 , but when  n = 1, r = 0, also estimate  θ� = 0. 

If one player shot 100 times, and hit 100 times, then we 
intuitively felt his shot level was very high. However the other 
one shot 1 time, hit 1 one time, and we cannot infer that their 
shot level is same, but estimating θ with 

�
�, the same estimation 

result is obtained. 
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According to probability theory, if one player’s hit rate is θ, 
when he shot n times, hit x times, then the probability of this 
event is shown as follows: 

P�X = x|θ
 = C��θ��1 − θ
���                                       (1) 
Where θ is a random variable, the probability in eqn (1) is 

the conditional probability of X given θ. 

To estimate θ by the sample X, according to Bayesian 
theorem the conditional probability density of θ given X can be 
written as: 

π�θ|X
 = p�X|θ
π�θ

m�X
 																																																		�2
 

Where π(θ|X) is a combination of a prior belief that the 
probability distribution function is π(θ) and observations X 
with the likelihood p(X|θ). m(X) is the marginal density 
function of X, which is not relevant to θ. And this conditional 
probability π(θ|X) is named as posterior probability. The 
posterior probability is used to estimate the parameter θ given a 
sample X.  

And if we do not know about the shooter, the assignment of 
his hit rate θ in [0,1] has the same possibility, then the prior 
distribution π(θ) follows Uniform distribution in [0,1] 
( Bayesian assumption ), that is, 

π�θ
 = �1, 	 	θ ∈ [0,1]
0, 	 	θ ∈� [0,1]�																																												(3) 

Thus, π(θ|X) can be expressed as: 

π�θ|X = x
 = θ��1 − θ
���
� θ��1 − θ
���dθ 
!

	,							0 ≤ θ ≤ 1									�4
 
And eqn(4) indicates that the posterior distribution π(θ|X) 

follows Beta distribution. 

Then the parameter θ will be estimated by the expectation 
of this posterior distribution π (θ|X), that is, 

θ� = E%θ|X = x& = 1
B�x + 1, n − x + 1
* θ ∙ θ��1 − θ
���dθ

 

!
 

= B�x + 2, n − x + 1

B�x + 1, n − x + 1
 =

x + 1
n + 2										�5
 

Back to the example of the shooter, when n = r = 1, 
θ� =  - 

 -. =
.
/ , and when n = r = 100,  θ� =  !!- 

 !!-. =
 ! 
 !. . 

Obviously this estimate is more reasonable than the above 
�
�. 

Summarize the core idea of Bayesian parameter estimation 
method: 

Regard the unknown-parameter θ as a random variable. 
When θ is known, the joint distribution density p(x1,x2,…,xn; 
θ) of sample x1,x2,…,xn is regarded as the conditional 
probability density of x1,x2,…,xn given θ, denoted by 
p(x1,x2,…,xn|θ) or p(X|θ). 

Try to determine a prior distribution π(θ) (based on a prior 
belief of the parameter θ). 

Combine the conditional distribution density p(x1, 
x2,…,xn|θ) and prior distribution π(θ), posterior distribution 

density π(θ|x1,x2,…,xn) can be obtained according to Bayesian 
theorem. 

Use the posterior distribution density π(θ|x1, x2,…,xn) to 
estimate the parameter θ. 

For the prior distribution π(θ), if following the conjugate 
distribution of p (X|θ), Bayesian parameter estimation of the 
above shooter example is as follows: 

In the example, one player shot n times, hit x times, this 
event follows Binomial distribution, and the conjugation 
distribution of Binomial distribution is the Beta distribution, 
denoted by B (a,b). Assign this Beta distribution to the prior 
distribution π(θ), then π (θ|X) can be expressed as: 

π�θ|X = x
 = 1
B�x + a, n − x + b
 θ�-2� �1

− θ
���-3� ,							0 < 5 < 1						�6
 
Then the parameter θ will be estimated by the expectation 

of this posterior distribution π (θ|X), that is, 

θ� = E%θ|X = x& = x + a
n + a + b																																																	�7
 

This estimation result shows that using B (a, b) as a prior 
distribution, i.e. shot (a+b) times before this shooting, hit a 
times, now shot n times, hit x times, thus, in total shot (n + a + 
b), hit (x + a) times. 

When a = b = 1, B (a, b) is a Uniform distribution in [0, 1], 
so this method is consistent with the above Bayesian 
Assumption: prior distribution follows Uniform distribution 
when we do not know about the shooter. 

In this shooter experiment, assuming the results of each 
shot are not “hit” or “un-hit”, but multiple rings, that is, the 
target surface is divided into multiple rings (k rings), every shot 
can hit a target ring, and the hit probability of each ring is 
different, denoted by θ = (θ1,…,θk). The result X = (x1,…,xk) 
of n-shooting follows Multinomial distribution Mult(θ), and the 
conjugate distribution of Multinomial distribution is Dirichlet 
distribution[7], so assign Dirichlet distribution to prior 
distribution π(θ), and using the conditional distribution  p(X|θ) 
and the prior distribution π(θ), the posterior distribution π(θ|X) 
can be obtained according to Bayesian theorem. Then the 
expectation of the posterior distribution π(θ|X) is used to 
estimate θ. 

Process similar to the above shooter experiment can be used 
in text modeling. While text modeling, let us assume that there 
are k words in a vocabulary, and the word probabilities are 
denoted by θ = (θ1,…,θk) . For a document which contains N 
words, the N observed words is a multivariate discrete random 
variable that follows Multinomial distribution with parameter θ. 
And the conjugate prior distribution of θ is Dirichlet 
distribution. 

This process of text modeling can be described with 
Bayesian Unigram Model, and its graphical model is depicted 
in Figure 1. 

 
FIGURE I: BAYESIAN UNIGRAM MODEL. 
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Where θ refers to the probabilities of the words in a 
vocabulary, w refers to the observed word in a document which 
contains N words，α is the parameter of the prior Dirichlet 
distribution which expresses a prior belief. 

Under this Bayesian Unigram Model, the words of every 
document are drawn independently from a Dirichlet 
distribution. 

III  BAYESIAN PARAMETER ESTIMATION IN LDA 

Bayesian Unigram Model in section 2 is too simple to be 
used to text modeling. Because documents are mixtures of 
topics, and a topic is a “bag-of-words”. Each document should 
be generated by first choosing a topic and then generating 
words based on this topic. This idea of text modeling can be 
described with Mixture of Unigrams Model [8], and its 
graphical model is depicted in Figure 2. 

 
FIGURE II: MIXTURE OF UNIGRAM MODEL. 

Where z refers to a topic, w refers to an observed word in 
the document, M is the size of a corpus, and N is the length of a 
document. 

Probabilistic latent semantic analysis (PLSA) proposed by 
Hoffman in 1999 is a mathematical topic model. And it is 
regarded as the actual origin of topic model. The graphical 
model of PLSA Model is depicted in Figure 3. 

 
FIGURE III: GRAPHICAL MODEL REPRESENTATION OF PLSA. 

Where d refers to a document index, z refers to a latent 
topic, w refers to an observed word in the document, M is the 
size of a corpus, and N is the length of a document. 

PLSA model assumes the following generative process for 
each document in a corpus: 

Choose a document index d~p(d); 

For each each of the N words in the document d 

Choose a latent topic z~p(z|d); 

Choose a word w~p(w|z) 

According the generative process of PLSA model we can 
find the two key parameters which are p(z|d) and p(w|z). The 
p(z|d) indicates the probability distribution over topics for each 
document, and the p(w|z) indicates the probability distribution 
over words associated with each topic. In PLSA model, the two 
parameters are estimated by MLE (Maximum Likelihood 
Estimation) method. 

But for the two parameters: p (z|d) and p(w|z) in PLSA, 
Bayesian scholars have their different opinion, that is, the two 
parameters are random variables, so they should have their 

prior distributions. Further the PLSA model is extended based 
Bayesian opinion. In the extended PLSA model, p(z|d) and 
p(w|z) have their conjugate prior distributions —Dirichlet 
distribution. This new extended model is LDA model [9]. 

Under LDA model, p(z|d) and p(w|z) are estimated by  
Bayesian estimation method. That is, using the conditional 
distribution and the prior distribution of parameters, the 
posterior distribution can be obtained according to Bayesian 
theorem, then the expectation of the posterior distribution is 
used to estimate parameters. 

The graphical model of LDA Model is depicted in Figure 4. 

 
FIGURE IV: GRAPHICAL MODEL REPRESENTATION OF LDA. 

Where θ refers to document-topic distribution, φ refers to 
topic-word distribution,  α and β are the parameters for the two 
Dirichlet distributions which express the prior beliefs, M is the 
size of a corpus, N is the length of a document,  z refers to a 
latent topic, w refers to the observed word in a document which 
contains N words. 

The LDA graphical model can be divided into two key 
physics process: 

1) α→θ→z generates the corresponding topics of all words 
in a document. α→θ corresponds to Dirichlet distribution, and 
θ→z Multinomial distribution, so this process is a Dirichlet-
Multinomial conjugate structure. 

2) β→φ→w generates every word of a document based on 
a special topic. β→φ corresponds to Dirichlet distribution, and 
φ→w Multinomial distribution, so this process is also a 
Dirichlet-Multinomial conjugate structure. 

The two Dirichlet-Multinomial conjugate structures 
cooperate with each other to to generate the document. The 
generative process for each document is as follows: 

1. Choose φk~ Dirichlet (β), k∈[1, Κ] 
2. For all documents m∈[1, Μ] 

a) Choose θm~ Dirichlet (α) 
b) Choose Nm~ Poiss (ξ) 
c) For the nth word in document m, n∈[1, Nm] 

i. Choose a topic zm, n~ Multinomial (θm) 
ii. Choose a word wm, n~ Multinomial (φzm,n) 

That is, to make a new document, at first LDA chooses a 
distribution over topics, then for each word in the document, 
chooses a topic at random according to this distribution, and 
draws a word from that topic. 

IV  SUMMARY  

LDA probabilistic topic model is becoming more and more 
useful in many applications, such as text mining, natural 
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language processing and so on. So it is very necessary to 
deeply learn LDA. This paper starts from Bayesian parameter 
estimation, introduces the related mathematical knowledge of 
LDA which are prior distribution, posterior distribution, 
Bayesian estimation, Multinomial distribution, Dirichlet 
distribution, conjugate distribution, etc., and analyzes the 
limitations of the simple Bayesian Unigram model and PLSA 
model for text modeling. Finally, a full Bayesian probabilistic 
topic model — LDA is presented based on these analyses. 
Through this paper you can know that LDA is an excellent 
document model based on Bayesian theorem. 
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