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Abstract—We present a decision support system (DSS) to 
compute performance measures of a project under uncertainty 
on the activities’ duration as well as four different types of 
precedence relationships. The DSS generates replicates of the 
project’s performance, in which we simulate the duration of each 
activity. From these replicates, the expected completion time, the 
variance of completion time, the service time for a given service 
level and the probability that each activity will be in the critical 
path are estimated along with their corresponding measures of 
accuracy. A validation of the DSS was performed by computing 
the empirical coverage, mean and standard deviation of half-
widths, mean square error and empirical bias for the main 
performance metrics of a given project. Our experimental results 
show that the procedures implemented in the DSS provide a good 
coverage and consistent half-widths.  

Keywords-Project Management; PERT; CPM; Project 
Simulation 

I. INTRODUCTION 

A project is a process that requires the execution of 
multiple activities with different types of dependency 
relationships. These activities are tasks associated with the 
execution of the project and consume a certain amount of time 
to be completed. In turn, activities may also have precedence 
relationships amongst them; in other words, the initiation (or 
completion) of specific tasks may require that other activities 
have been completed (or initiated). There are several project 
management techniques that can be used to estimate the 
performance of a project, all of which require the 
identification of the activities associated to the project, their 
durations and precedence relationships. 

The most commonly used performance measures of a 
project are: the total duration (time between initiation of the 
first activity and completion of the last activity) and its cost; 
both of which are typically dependent on the durations of the 
individual project’s tasks. As is known from the project 
management literature, the classic methodology to estimate the 
duration and cost of a project is based on the use of the 
PERT/CPM approach [1], which has been used since the 
1950s. The critical path method (CPM) is used to estimate the 
total duration of the project when the duration of the activities 
is known. On the other hand, classical program evaluation and 
review technique (PERT) incorporates uncertainty in the 
duration of these activities, but relies on the expected 

durations to calculate the critical path. Thus, the validity of the 
PERT/CPM approach relies on several assumptions, such as: 
the duration of the activities are statistically independent, all 
precedence relationships must be of finish to start type (i.e., 
precedent activities must have concluded for the dependent 
activity to start) and there is only one possible critical path, 
which is determined from the expected duration of the 
activities. In reality, it is quite difficult for a project to meet all 
these requirements since there may be several types of 
precedence relationships aside from the traditional finish to 
start (e.g., start to start) and the uncertainty in the duration of 
individual activities will generate uncertainty in the critical 
path. Due to these limitations, several other techniques for 
project performance analysis have become widespread and 
rely on more robust methods, such as stochastic simulation [2]. 

The uncertainty associated to the duration of individual 
activities is incorporated into project analysis using probability 
distributions. However, due to the precedence relationships 
across different activities, it is not possible to obtain analytical 
expressions for the performance measures estimates; but they 
may be estimated through simulation. The use of stochastic 
simulation to estimate performance measures of a project has 
been widely used in the project management community. For 
instance, a method to calculate the critical path of a project 
using the classical PERT/CPM approach and stochastic 
simulation is proposed in [3]. A software (called SPSS) that is 
capable of estimating the probability that the duration of a 
project does not exceed a total (user defined) time is 
developed in [4]. In subsequent work [5], an update to the 
SPSS software (named S3) is reported; S3 is capable of 
allowing the user to define an accuracy level for the estimates 
by providing confidence intervals, as well as the number of 
replicates per simulation experiment. All these models were 
constructed assuming only one type of precedence relationship: 
the classic finish to start. A simulation-based decision support 
system (DSS)  to estimate the expected duration of a project 
under different types of precedence relationships is developed 
in [6] and, in this work, we extend the use of simulation to 
estimate risk measurements such as the variance of the project 
duration and the service time for a given service level.  

It is relevant to note that the methods described here 
belong to class of algorithms that leverage on the use of 
simulation to solve decision-making problems in project 
management. Other examples of work in this area include a 
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report on the use of stochastic simulation to determine the 
crash times that minimize the cost of different projects [7], the 
use simulation to determine optimal resource allocation across 
several projects in the context of construction industry [8], and 
the use a simulation approach to determine optimal resource 
allocation for the activities of a specific construction project [9, 
10]. Once again, in all this prior work, only the classical finish 
to start precedence relationship was assumed.

II. DSS FEATURES

Input data for our DSS consists of a detailed list of project 
tasks, including duration and precedence relationships for each. 
We include the following types of precedence relationships 
[11]: finish to start (FS, the activity may start only if the 
preceding activities have concluded), start to start (SS, the 
activity may start only if the preceding activities have also 
started), finish to finish (FF, the activity may finish only if the 
preceding activities have also concluded) and start to finish 
(SF, the activity may finish only if the preceding activities 
have started).  

The classical approach to calculate the critical path of a 
project, as described with the CPM method [1, 12], relies on 
an algorithm that calculates the early start time (EST), early 
finish time (EFT), late start time (LST) and late finish time 
(LFT) for each activity. The algorithm runs in two steps: a 
“forward” and “backward” iteration. In the “forward” iteration, 
the EST and EFT (for each activity) are calculated from their 
predecessors, starting with the first activities (those with no 
predecessors). On the other hand, in the “backward” iteration, 
the LST and LFT (for each activity) are calculated from their 
successors, starting with the last activity (those completed at 
the end of the project). Having made these calculations, 
activities with EST equal to their LST (and, in consequence, 
also have equal EFT and LFT) belong to the critical path, 
since there is no slack between the early and late starting times. 
It is worth mentioning that this algorithm is designed for 
projects that work with FS precedencies only.

FIGURE I. .COMPUTATIONS REQUIRED TO DETERMINE EST, EFT, 
LST AND LFT. 

We developed a variant of the CPM to identify the critical 
path of a project with more than one type of precedence 
relationship. Said algorithm is also divided into two steps: a 
“forward” and “backward” iteration, where the EST, EFT, 
LST and LFT of each activity are sequentially calculated. 
However, contrary to the traditional method, several additional 
conditions for each type of precedence relationship must be 
verified to determine the critical path. In 
the required calculations (per iteration of the algorithm) 
according to the precedence relationship that must be satisfied. 
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increases; and in this case, the empirical coverage will
converge to the nominal value of  

Figure. 3 shows the flow diagram for the project used to 
perform the experiments. Note that a number on an arc 
indicates the number of days that must elapse for the activity 
to start following the fulfillment of the precedence condition. 
If there is no number, we assume a value of zero, i.e., that the 
activity may start immediately after the precedence has been 
met. 
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TABLE I  .RESULTS FOR THE MEAN DURATION OF THE PROJECT 
FOR M

    95% Half

  EC Mean

 m = 400 
0.936 0.2201

m= 1600 
0.938 0.1100

m= 4800 
0.955 0.0635
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RESULTS FOR THE MEAN DURATION OF THE PROJECT 
1000=M . 

95% Half-
width 

    

Mean Std. 
Dev. 

MSE Bias 

0.2201 0.0075 0.0136 -
0.0035 

0.1100 0.0019 0.0034 -
0.0038 

0.0635 0.0006 0.0010 -4.1E-
06 
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TABLE II  .RESULTS FOR THE DURATION VARIANCE OF THE 

PROJECT FOR 1000=M . 

    95% Half-
width     

  EC Mean Std. 
Dev. 

MSE Bias 

m=400 1 1.5388 0.0624 0.1179 0.0162 

m=1600 0.994 0.4806 0.0132 0.0301 0.0030 

m=4800 0.98 0.2245 0.0042 0.0091 0.0007 

TABLE III  .RESULTS FOR THE 90% SERVICE TIME OF THE PROJECT 

FOR 1000=M . 

    95% Half-
width 

    

  EC Mean 
Std. 
Dev. MSE Bias 

m = 400 
0.952 0.3771 0.0750 0.0387 -

0.0178 

 m=1600 
0.946 0.1896 0.0271 0.0096 -

0.0082 

m = 4800 
0.954 0.1086 0.0118 0.0030 -

0.0022 

TABLE IV  .RESULTS FOR THE PROBABILITY OF TASK 16 IN 

CRITICAL PATH FOR 1000=M . 

    95% Half-
width     

  EC Mean Std. 
Dev. 

MSE Bias 

m = 400 0.957 0.0424 0.0012 0.0004 0.0014 

 m= 1600 0.945 0.0212 0.0003 0.0001 -0.0001 

m = 4800 
0.951 0.0123 0.0001 4.1E-

05 
0.0001 

V. CONCLUSIONS 

In this work, we successfully developed a DSS capable of 
estimating performance measures associated to the total 
duration of a project that incorporate the uncertainty in the 
duration of individual activities and more than one type of 
precedence relationship between these. We used stochastic 
simulation to incorporate the uncertainty in the activities 
durations and we developed an algorithm capable of 
determining the critical path for each project replication. In 
turn, this allowed us to estimate the expected value for the 
total duration of the project, the variance of completion time, 
the service time for a given service level, and the probability 
that each activity will belong to the critical path and compute 
error measures for each of these by providing half-widths of a 
confidence interval.  

Lastly, we used a hypothetical example to test the 
performance of the developed DSS by measuring the accuracy 
and consistency of the reported estimates. The results from 
this hypothetical test show that even for a small number of 
replications, the system is capable of finding good empirical 
coverage with half-widths that decrease as the number of 
repetitions increase. 
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