
Effective Discretization Scheme for the Heston Model: 
Implicit Solution Based Approach 

Y.F. Sun, L.T. Ding, C.Y. Liu, G.Y. Zhang 
School of Management 

Guangdong University of Technology 
 Guangzhou, China 

 
Abstract—Four novel discretization schemes that built on the 
implicit solution of the variance, are proposed to effectively 
simulate the Heston model. The idea behind these schemes is 
fundamentally different from those of the Euler and Milstein 
based discretization schemes, and the so-called nearly exact 
simulation approaches. Numerical experiments show that these 
new schemes are of both accuracy and fast convergence in option 
pricing, and seem almost comparable to the famous quadratic 
exponential scheme. 
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I. INTRODUCTION 

The stochastic volatility (SV) model has become the de 
facto standard model in the derivatives market (Grzelak, 
Oosterlee & Weeren, 20110[1]; Haastrecht, Lord & Pelsser, 
2014[2]). The Heston model, introduced by Heston(1993), 
now is one of the most widely used SV models, due to its nice 
market fit.  

However, effective simulation to the Heston model is not a 
trivial problem. The traditional Euler and Milstein based 
discretization schemes, generally relying on the truncation 
techniques to deal with 'negative-variance' problem, cannot 
meet the accuracy and robust requirements in financial 
practice. Broadie & Kaya(2006) [3] propose an exact 
simulation scheme to the Heston model, building on the 
known conditional distribution of the variance process, to say, 
non-central Chi-squared distribution, but this exact approach is 
quite impractical due to its low efficiency.  

Recently, interests have been focused on nearly exact 
simulation to the Heston model (see Broadie & Kaya(2006)[3]; 
Andersen (2008)[4]; Haastrecht & Pelsser (2010)[5];  
Glasserman & Kim(2011)[6]; Tsea & Wana (2013)[7]; Fabrice 
Rouah (2013)[8]; etc). These 'nearly exact simulation' 
literature generally apply some simple distributions (or 
functions) with good computability to approximate the non-
central Chi-squared distribution to sample the variance and the 
asset price, with trade-off of efficiency and accuracy. For 
example, Andersen(2008)[4] suggests the quadratic 
exponential function, Glasserman & Kim(2011)[6] use 
Gamma expansion, while Tsea & Wana(2013) [7] hire an 
inverse Gaussian distribution, to act as the approximation. 

In this research, we keep moving forward, but along a 
quite different direction. We apply the implicit solution of the 
variance (Hanson, 2010) [9] to effectively simulate the Heston 
model. We develop four novel discretization schemes in this 

direction and show their accuracy and convergence by 
numerical experiments and comparisons with the famous 
quadratic exponential scheme[4]. 

II. AN IMPLICIT SOLUTION OF THE VARIANCE TO THE 

HESTON MODEL 

The Heston model (Broadie & Kaya(2006), Glasserman & 
Kim(2011), Tsea & Wana(2013)) writes 
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Hanson(2010)[9] provides an implicit solution of the 
variance in Equation (1), that is 
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II I. THE DISCRETIZATION SCHEME 

A. Sampling the Variance Process 

1) For a small variance: Since there exists a singular 
integral term in Equation (3), we need to carefully sample the 
variance near zero. Our method is:  given vε  a  small enough 
positive value (for example, a critical value that corresponds to 
0.1% the cumulative distribution value of the non-central Chi-
squared distribution), when 0 ,t +∆ →   0vt ε +∆ →  and t̂ vV ε< , 
the variance at t t+ ∆  is then sampled as follows 
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2) For a large variance: When t̂ vV ε≥ , we apply proper 
numerical integration methods, such as the Euler method, the 
trapezoidal method and the Simpson method, to sample the 
variance t̂ tV +∆ . The common discretization scheme for t̂ tV +∆  is 
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where t̂ tY +∆  is sampled by the following three ways. 

1) Euler method (for simplicity, hereinafter, we denote 
the implicit solution based discretization scheme built on the 
Euler method as IS1) 
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2)The trapezoidal method (IS2) 

( ) 222 2 21
ˆ

1
4 ˆ

ˆ ˆ 1
1

2 ( )
2

t

t t t

t t t

t t vt v V

e
vV

eY WV te e t
κκ κ κ

κθ σ σ
∆

+∆

∆

+∆

 
= ∆

  + − +  


+ + ∆  
          (6) 

Hence, t̂ tV +∆  can be sampled as the non-negative solution 

to equation 
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It is easy to show the quadratic equation (7) always has a 
non-negative solution. This guarantees that the sampling of 

t̂ tV +∆  by the IS2 is effective.  

3)The Simpson rule 
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We have two ways to approximate to 0.5t̂ tV + ∆  in Equation 

(8): 
ˆ ˆ

2
t t tV V +∆+  and ˆ ˆ

2
t t tV V +∆+ . If the first way is taken, t̂ tV +∆  can 

be sampled as one of non-negative solutions to equation 
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For convenience of notation, we denotes this scheme as IS3. 

If the second approximation is taken, i.e.,0.5
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t̂ tV +∆  can be sampled as one of non-negative solutions to the 

following equation 
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We denotes this approach as IS4. 

Remark: During the sampling process, if the above 
equations (7), (9) and (10) have more than one non-negative 
roots, we may take the maximum one, the minimum one, the 
nearest neighbour to t̂V , or take one randomly. In this research, 
we use the third way. On the other hand, if any one of these 
equations has none of non-negative roots,  we can use another 

( )vW t∆  to make it has. 

B. Sampling the Asset Price 

Let (1)
tW  and (2)

tW be two independent standard Weiner 

processes such that (1) 2 (2) (2)1 ;s v
t t t t tW W W W Wρ ρ= + − = . Then 

Equation (1) can be uncoupled as 
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Integrating Equation (11), yields 
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Substituting Equation (13) into Equation (12), yields 
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Then we can easily obtain by Equation (14) 
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Hence, the asset price can be sampled via the following 
formula 
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whereZ  is a standard Weiner process. 

IV. NUMERICAL EXPERIMENT 

To test the accuracy and convergence of our newly 
proposed schemes, we take the same parameters (listed in 
Table 1) with BK’s in [3] with spot price 100 and strike 100. 
For the limit of length, we only select a difficult case in the 
sense that the Feller condition is very dissatisfied with 

2
2 1 0.64ellerF κθ
ε

= − = − . Generally, if parameters in the Heston 

model are such that the Feller condition is not satisfied, this 
case may act as a benchmark test for discretization schemes. 

TABLE I  .PARAMETERS IN THE HESTON MODEL AND THE 
REFERENCE VALUE OF AN EUROPEAN CALL OPTION. 

κ  θ  ε  ρ  r  (0)V  T (y) (0)C  
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34. 

9998 

We compare our numerical results with those simulated by 
the Euler and the QE scheme. In experiments, we take 

1 / 4t∆ = . For the QE scheme, 1 0 5γ = . , 2 0 5γ = .  and 1 5cΨ = . . 
The implementation codes of all discretization schemes, are 
programmed with Matlab language and executed on a PC 
equipped with Win7(64bit) and Intel(R) Xeon(R) CPU E5-
1620 v2 @3.70GHz 3.70GHz RAM 8.00GB.  

We plot the absolute bias curve in Figure 1(a) for all 
discretization schemes, i.e., the Euler scheme, QE scheme and 
our four discretization schemes. To show how well these 
schemes works, we also provide the root-mean-squared (RMS) 
error curve in Figure 1(b) with definitionRMS =  

2 2
fbias σ+ (wher fσ  denotes as the standard error of payoff 

samples ˆ( ) 1 2i
pathsTf i NS , = , , ,⋯ ).  

 
(a)  Absolute bias              (b) Convergence 

FIGURE I. .ACCURACY AND CONVERGENCE OF DISCRETIZATION 
SCHEMES. IN FIGURE, IS_I (I=1,2,3,4) MEANS THE IMPLICIT 

SOLUTION BASED DISCRETIZATION SCHEME PROPOSED IN THIS 
RESEARCH. 

Figure 1 (a) and (b) presents that our newly proposed 
discretization schemes can achieve good accuracy and fast 
convergence in option pricing under the Heston model with 
parameters such that the Feller condition is very dissatisfied, 
just as well as the famous QE scheme does, while the Euler 
scheme almost fails to rightly price the European call option in 
this experiment. Further, according to the absolute bias plotted 
in Figure 1 (b), the convergence processes of IS2, IS3 and IS4 
scheme seem more stable than that of IS1 scheme. This can be 
explained by the accuracy order of numerical method applied 
in the treatment to the singular integral term in Equation (3). 

V. CONCLUSIONS 

The newly proposed implicit-solution based discretization 
schemes in this article can successfully simulate the Heston 
model with good accuracy and convergence that can almost be 
comparable to the quadratic exponential scheme's. However, 
we also notice the RMS of our discretization schemes are 
notable and should be enhanced. Behind the RMS, there may 
be a challenging problem: how to select a ‘good’ root when 
the sampling equation has more than one non-negative 
solutions.  
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