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Abstract—In the given work the generalized variation 
formulation quasi-static problems plastic forming details taking 
into account creep deformations is resulted. For the considered 
formulation theorems of uniqueness, stability and the 
convergence of an iterative method proved for inverse problems 
forming are true. An iterative method is proposed for solving 
nonlinear inverse problems of shaping structural elements. The 
method is implemented using a software package based on finite 
element analysis. Numerical results of problems forming are 
resulted. 
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I. INTRODUCTION 

In connection with introduction of new technological 
processes, modes, materials at details manufacturing of is 
difficult-constructive forms with high requirements to 
dimensional accuracy and an operational resource application 
of numerical modeling becomes the most favorable. Still 
recently the establishment of the basic parities of mathematical 
models demanded accumulation and the analysis of huge files 
of experimental and natural industrial data that is interfaced to 
considerable material and time expenses. At the same time the 
modern mechanical engineering is characterized by more and 
more increasing frequency of removability of objects of 
manufacture, and also complication of constructive forms and 
increase in overall dimensions of details of designs. Thus, the 
effective decision is application of numerical modeling at 
reception of estimations operational and technical 
characteristics on a developed product. 

The inverse shaping problem determines external forces 
and kinematic effects under which a strain process occurring 
under creep conditions over a given time interval leads to a 
prescribed residual configuration after elastic unloading [1, 2]. 

By using equations for virtual works under certain 
constraints, the geometrically nonlinear inverse shaping 
problems for inelastic plates and shells were shown to be well-
posed in [2]. Below, in the simulation of geometrically and 
physically nonlinear problems in solid mechanics, we use the 
variational principles of quasi-static strain [3]. The well-
known principles of the construction of iterative procedures 
are based on variational inequalities. The formulation of 
problems in terms of variational inequalities is possible when 
the functionals involved are convex, which is ensured by 
taking into account sufficient uniqueness conditions for 
boundary value problems [4]. This formulation makes it 

possible to determine the convergence conditions for iterative 
methods. 

II. FORMULATION OF SHAPING PROBLEMS 

Let 
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Consider the quasi-static shaping problem with allowance 
for small deformations and large displacements and rotations 
(general Lagrangian formulation), including inelastic strain 
and elastic unloading. The inelastic strain and elastic 
unloading problems can be represented in the form of a quasi-
static variational principle with the functional: 
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, where the 

current and residual strain rates are the Green–Lagrange strain 
tensor rates 1
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Here, cijkl  
are the components of the symmetric elastic 

constant tensor; n
klεɺ  are the inelastic strain rates (plasticity, 

creep, plasticity and creep); , , , 1, 2, 3i j k l = ; dotted letters 
denote derivatives with respect to time t; and double indices 
with a comma denote differentiation with respect to the 
coordinate: 
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Alternative constitutive relations written for the current 
and residual rates of the first Piola–Kirchhoff stress tensor 
have the form 
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The sufficient conditions are given by [3, 4] 

0,u dVij i j
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for all pairs of continuously differentiable displacement rate 
fields taking preset values on the boundary. Here, ∆  denotes 
the difference between solution-corresponding quantities in 
any two different forms of strain. 

III.  ITERATIVE METHOD FOR SOLVING INVERSE SHAPING 

PROBLEMS 

Let the sufficient conditions for the uniqueness of a 
solution of strain problem and unloading problem hold. Then 
the functional in eqn (1) are not only stationary, but also reach 
an absolute minimum for a real type of strain (see [4], [5]). 

An iterative analogue of the variational inequalities for 
functional eqn (1) has the form 
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Then iterative process eqn (2) for solving the inverse 
shaping problem is represented as [5] 
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To solve inverse shaping problems for structural elements, 
such as thin plates, it is sufficient to find a displacement 
function. 

Applying the finite element method [3, 6] to the functional 
of the variational principle for inverse problems with 

allowance for the unloading displacement 
e = −w w wɺɺ ɺ ɶ , we 

obtain two vector equations 
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where wɺ , wɺɶ  are the velocities of the node parameters 

describing the inelastic strain displacement ( , )1 2w x x
 
and the 

residual displacement ( , )1 2w x xɶ ; K , Kɶ  are the tangent 

stiffness matrices; and Fɺ  us the vector of external forces. 

The second equation in eqn (4) is an unloading problem 
with initial stresses and strains obtained by solving the 
inelastic strain problem. 

Consider a square plate of thickness h with a side length а. 
Suppose that a plate displacement is given that models torsion 
[7] in the form of node displacements in the normal direction 
to the plate surface. 

For a more complete analysis, the volume formulation of 
the problem is considered. The elastic, plastic and creep 
characteristics of the v95och material (aluminum alloy) were 
used in the computations.  

 
FIGURE I. MODEL OF A PLATE AND ITS ANTICIPATED SHAPE. 

The anticipated shape of the plate ensuring a given 
curvature after elastic unloading was computed using the 
iterative method with different constant coefficients α . Fig. 1 
shows the given residual shape of the plate for which the 
anticipated shape was found and the flat model of the plate. 
Fig. 2 demonstrates the convergence of the iterative method 
eqn (3) with different constant coefficients in the mean-square 

norm ( )( )1 220i
e S∑= −w wɶ ɶ

, where S is the lower surface of the 

plate and i is the iteration number. 

 
FIGURE II. CONVERGENCE FOR VARIOUS COEFFICIENTS. 

An iterative method for solving inverse shaping problems 
in the general Lagrangian formulation was constructed, and its 
convergence conditions were determined. Successive 
approximations were found by applying the finite element 
method in the MSC. Marc engineering analysis package. The 
algorithms developed can be used in industrial applications, 
such as the shaping of aircraft wing panels [8]. 
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