
Software Modelling and Automatic Code Generation
Based on Reactive State Diagram

M.C. Qu
Department of Aerospace Engineering

School of Computer Science and Technology
Harbin Institute of Technology

China

L.J. Meng, X.H. Wu
School of Computer Science and Technology

Harbin Institute of Technology
China

N.G. Cui
Department of Aerospace Engineering

Harbin Institute of Technology
 China

Abstract—Based on the UML state diagram it can model the
reactive system which is event-driven exactly and elaborately.
Building a system model from the top level using the UML state
diagram model has many advantages, such as reusability,
maintainability, interactively, etc. Although there are some
mainstream commercial modelling tools supporting code
generation from diagram model, most of the generated code
frameworks are OO (object-oriented) and could not satisfy the
resource constraint in the real-time embedded system [1]. In the
embedded system software, there are lots of reusable public
service codes, we design and realize a real-time framework using
the reusable code. By implementing an operating system
encapsulated layer based on the real-time framework, we achieve
the objective of developing application software independent of
the target platform, and making the generated code be capable of
cross-platform capability. Based on the real-time framework and
the characteristic of state diagram, we designs and implements an
algorithm for generating code automatically and a real-time
framework of state machine [2], which are all verified by the
engineering project.

Keywords- state diagram; software modelling; generating code
automatically

I. INTRODUCTION

In 1997 OMG(Object Management Group) released the
UML, there are many software modelling tools such as
Microsoft’s Visio, IBM’s Rational Rose and Rational
Rhapsody, etc.

Now days existing many kinds of diagram modelling
software of UML, which have large function, complex
interfaces and are specific to the OO development process
almost all of them satisfy the whole standard of UML. Our
development of embedded software is more specific to
procedure-oriented [3]. The tools existing could not satisfy our
requirements, so, developing a diagram modelling software
which is fit for resource constrain embedded software has
practical significance.

This paper designs and implements a diagram modelling
tool, which bases on the standard of UML state diagram,
applying the plug-ins technology of Eclipse and GEF. The tool

realizes some functions such as modelling, item management,
document management, project wizard, exporting mages, etc.
It uses the patterns of MVC and the given algorithm exporting
the XML models for generating code automatically. In this
article, firstly describing the relevant technologies, secondly
designing the modelling tool, then providing the key part,
lastly giving the test and conclusion.

II. STATE MACHINE REAL-TIME FRAMEWORK

The RTF (real time framework) is regarded as a
middleware, existing between user application and target
platform [4]. Figure. 1. shows the overall hierarchical structure.
The RTF shield the difference of different target platform,
providing the unified OO interfaces. It is not need to consider
the difference of the platform when analysing user and
designing the application, but concentrate on the design and
implement of the software’s function. The application’s
objects and events will be mapped to the relevant part of the
RTF, which will be used to access resource and call relevant
operation [5].

FIGURE I. .HIERARCHY OF RTF.

RTF uses Operation System Encapsulated Layer (OSEL)
to call on the resources and services of the target system.
Many other cross-platform software used this method too. In
Figure. 2. OSEL includes two layers.

International Conference on Computer Information Systems and Industrial Applications (CISIA 2015)

© 2015. The authors - Published by Atlantis Press 899

FIGURE II. TWO-TIER STRUCTURE OF OSEL.

(1) Operation System Interface Layer (OSIL): OSIL
provides the unified interfaces for the upper layer of RTF and
the RTOS application. Adopting these interfaces, it is not need
to consider the differences of the operation system. For
example, adopting function OSTaskCreate() to create a new
task, adopting function OSTaskDestory() to destroy an active
task. The function’s implementation is related to the operation
system.

(2) Operation System Adaptation Layer (OSAL): the
interfaces the OSIL provides is implemented by the OSAL.
Designing different adaptation for the specific operation
system. Such as in the VxWorks, the implementation of the
function OSTaskCreate() calls for the VxWorks’ system call
taskSpawn(). So the differences of the system’s basement are
shielded by the adaptation layer.

The layer upper OSEL is the key part of the RTF,
including task management module, event management
module, timeout management module, etc. RTF is designed
and implemented by the object-oriented approach, so these
modules are classes, cooperate to achieve functional [6].

To meet the needs of developing different kinds of real-
time software, RTF provides two methods for Allocating
memory, dynamic allocation and static allocation. The C
language function malloc() and free() are used for dynamic
allocation and RTF uses static memory pool to manage the
static memory allocation.

III. BASED ON STATE DIAGRAM TO GENERATE CODE

Almost all the real-time software are responsive, that is
event-driven. So the state diagram is the best choice for
describing the dynamic characteristic of the instance. All the
users who used the state diagram modelling inherits the RTF
frame of responsive class Reactive. Task class receive the
event, then call on the class Reactive. The event call on
method dispatchEvent(void* me, Event* ev) to handle the
event. Figure. 3. Shows a simple state modelling of object Car.

FIGURE III. SIMPLE STATE MODELING OF OBJECT CAR.

Every node in the state machine has the only one
numerical symbol. System gives every users an enum to
restore the message. The state machine is stored as a trees tat.
A program of preorder traversal will get all the nodes’
message, then store in the enum. For example the object car:

Type def enum Car_States_Enum {

 Car_rootState = 0,

 Car_Run = 1,

 Car_Slow = 2,

 Car_Fast = 3,

 Car_Stop = 4

}Car_States_Enum;

Every node in the state machine has a state handler
indicates that the reactive movement when the event happens.
The function has two parameters, the first is a pointer points to
the object, the other is a pointer points to the event.

Type def UINT32 (*stateHandler) (void* me, const Event*
ev);

Every function bases on the event ID to choose the related
branch, the event including user event and predefine event.
The predefine event includes entry, exit, init, null. According
to the action, reaction, transition to choose the module, there
are if-else and guard condition in some switch branches.

For distributing the event of the object, there is an UINT32
member activeState in the object struct to state the object’s
state id which is changed all the time. The activeState is the
bottom active id. Every state has a function to tell whether the
state is active. The proof is to tell the activeState whether is its
or not.

Type def struct Car{

 . . .

UINT32 activeState; /* current active state id */

}Car;

Boolean Run_isActive(Car* me){ /* Run state active */

 if(me->activeState == Car_Run)

 return TRUE;

 if(Slow_isActive())

 return TRUE;

 if(Fast_isActive())

 return TRUE;

 return FALSE;

}

The function dispathEvent() handles the appointed event,
an object may has many dispathEvent(), and a container state
has one dispathEvent(). The object’s state is regarded as an
rootState, the function is rootState_dispathEvent(). The whole
object’s event distributing is accomplished by disoathEvent().
The process of dispathEvent is shown in Figure. 4.:

900

Begin

Is rootState?

over

Call on container state function ,return value Ret

Call on dispatchEvent function of subState ,return ret

Is subState a normal state?

Return ret

Does active's subState exist?

Call on the run function of subState ,return ret

N

Ret==IGNORE?

N

Y

Y

Y

YN

FIGURE IV. PROCESS OF DISPATCHEVENT().

When rootState_dispatchEvent return the value TRAN
presents the state will transfer. If the target state is a container
state or there is a null transfer, the state will be transfer again.
The object’s function taskEvent() get the
rootState_dispatchEvent()’s return value, using init and null
event to drive the state machine until the object turn in a stable
state.

When the object’s state has changed, all the state will be
executed on the path. For example in Figure. 5. , the
movement sequence is: firstly, executing state B_exit,
secondly, executing A_exit, thirdly, executing tran(), then,
executing C_entry(), at last, executing D_entry().

FIGURE V. A SIMPLE STATE TRANSITION.

Because all the state machine’s state node is stored as a
treestat, the compute is begin from the source state S transfer
to target state T, and the action sequence is: firstly, call on the
exitActions to save all the state, then, call on the entryActions
to store the entry state. The key part of the process is find the
first ancestral state node P of the source state node S and target
state node T. Along the path from P to S, putting all the
pointer of exit movement to the array exitActions. Then along
the path form T to P, putting all the pointer of entry movement
to the array entryActions. At last, calling on the function in
array exitActions is sequence to transfer, and then, calling on
the function in array entryActions is revered order. The whole
process is shown in Figure. 6. :

begin

distance>0

Compute the distance between state T

and state S

distance!=0

Add state run function pointer of stateS

into the array exitActions

S=father node of S,distance-1

Y

Y

distance!=0

Add state run function pointer of stateT

into the array entryActions

T=father node of T, distance+1

Y

N

state S!=state T

N

Add state run function pointer of stateS

into the array exitActions

Add state run function pointer of stateT

into the array entryActions

S=father node of S,T=father node of T

Y

Run the function in array exitActions in

order, parameter EXIT_EVENT

Transfer action

Run the function in array entryActions

in reversed order, parameter

ENTRY_EVENT

over

N

FIGURE VI. THE CALCULATION AND IMPLEMENTATION PROCESS
OF THE ACTION SEQUENCE

IV. CONCLUSIONS

Based on RTF to realize the software transportation and
reusing. Through packaging the difference of the real time
system, user could not consider the difference of the target
platform, but to concrete on the design of the function and
action. RTF provides many date structure and code for
embedded application. This paper implements the RTF and the
state diagram algorithm for generating code automatically.
Verifying them in the engineering project application.

ACKNOWLEDGEMENTS

Supported by the National Science Foundation of China
under Grant No.61402131; the China postdoctoral science
foundation under Grant No.2014M551245; the Heilongjiang
postdoctoral science foundation under Grant No.LBH-Z13105.

REFERENCE
[1] Malinowski A, Yu H. Comparison of embedded system design for

industrial applications[J]. Industrial Informatics, IEEE Transactions on,
7(2), pp. 244-254, 2011.

[2] Cagkan Erbas. A framework for system-level modeling and simulation
of embedded systems architectures[J]. EURASIP Journal on Embedded
Systems, (1), pp. 2-2, 2007.

[3] Kopetz H. The complexity challenge in embedded system
design[C]//Object Oriented Real-Time Distributed Computing (ISORC),
2008 11th IEEE International Symposium on. IEEE, pp. 3-12, 2008.

[4] Sebastien Gerard, Jean-Philippe Babau,Joel Champeau. Model Driven
Engineering for Distributed Real-Time Embedded Systems M]. Wiley-
IEEE, pp. 12-15, 2010.

[5] Abdoulaye Gamatié, Éric Piel. A Model-Driven Design Framework for
Massively Parallel Embedded Systems[J]. ACM Transactions on
Embedded Computing Systems (TECS), 10(4), pp. 300-302, 2011.

[6] Ali Fouad, Keith Phalp, John Mathenge Kanyaru, Sheridan Jeary.
Embedding requirements within Model-Driven Architecture[J]. Software
quality journal, (19), pp. 411-415, 2011.

901

