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Abstract—This paper examines gas permeation properties 
(feed pressure, temperature, molecular weight) using γ-
alumina mesoporous ceramic membrane with 15 nm average 
pore size. Scanning electron microscopy (SEM) of the 
membrane’s cross-sectional area was analyzed in this 
experiment. Single gas permeation of hydrogen, helium, 
methane, nitrogen, argon and carbon dioxide was determined 
at permeation temperature range of 25 0C - 450 0C and feed 
pressure range 0.05 to 10 bar. It was shown that the transport 
mechanism under these conditions is governed by a 
combination of viscous and Knudsen diffusion.  

Keywords-ceramic membranes; gas permeance; permeation 
temperature; gas molecular weight. 

I. INTRODUCTION 
Membrane gas separation is becoming the alternative 

technology in the chemical industry for purification 
processes because it requires minimum or no energy 
consumption [1, 2]. Membranes are barriers for gas 
separation from a feed gas mixture and produce permeate 
for other processes. Its performance can be dictated by the 
membrane strength, permeability and selectivity 
respectively. Membranes can be classified into organic and 
inorganic systems. The organic ones are further divided into 
biological and polymeric constituents, while the inorganic 
membranes can be divided into metallic and ceramic 
(porous and non-porous) membranes [3]. The International 
Union of Pure and Applied Chemistry (IUPAC) classified 
porous membranes as; Micropores 0.5 - 2 nm, mesopores is 
2 - 50 nm and macropores is > 50 nm [4, 5]. In recent time, 
membranes were fabricated from polymeric materials in the 
industry but these are limited to chemical attack and high 
temperature.  It is for these reasons that inorganic 
membrane technology is receiving an ever increasing 
attention [6].  Inorganic membranes are commonly made 
from ceramic, metal oxide or sintered metal, palladium 
metal, zeolite among others [7].  

Gas transport through inorganic membranes depend on 
pore size and pore size distribution, membrane materials as 
well as the chemical interaction between the diffusing gases 
[8]. The main transport mechanisms are viscous flow, 
Knudsen diffusion, surface diffusion and Solution-diffusion 
separation [9, 10, 11].  

The so-called Knudsen number is used to differentiate 
between viscous and Knudsen flow which is written as [12]; 

Kn = λ/dp            (1) 

Where; λ is the mean free path of gas molecules, and dp 
is the pore diameter.  

Basically, mean free path is the average distance 
travelled by the molecule between collisions. Therefore; 
mean free path is expressed as [12, 13];   
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                                   (2) 
Where; R is the gas constant (8.314 J.K-1.mol-1), T is the 

temperature (K), d is the diameter (m), NA is the 
Avogadro’s number (mol), and P is the pressure (Pa). 

Viscous flow is determined if the mean free path is 
smaller than the pore diameter, the flow characteristics are 
determined primarily by collisions among the molecules 
and can be written as [12]; 
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Where; Pv is the viscous permeance (mol m-2 s-1 Pa-1), ε 
is the porosity of the membrane, r is the mean pore radius 
(m), p1+p2/2 is the average pressure (Pa), ΔP is the pressure 
difference (Pa), μ is the viscosity (Pas),  and L is the 
thickness of the membrane (m). 

Knudsen diffusion occurs if the mean free path is 
effectively larger than the pore diameter. The separation is 
based on molecular weight [10, 11, 12]. Thus, Knudsen 
permeance states that the permeation flux is proportional to 
the inverse square root of both molecular weights of gases 
and temperature which can subsequently be written as [12]; 
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                         (4) 
Where; Pkn is the Knudsen permeance (mol m-2 s-1 Pa-1), 

τ is the tortuosity and M is the molecular weight of the 
diffusing gas (g/mol).  

However, if the mean free path of the gas molecules is 
equal to the pore diameter, then; the flow mechanism is 
governed by the combination of both mechanisms (i.e. Eq. 
3 and 4) which is written as; 
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Where Pt is the total permeance (mol m-2 s-1 Pa-1).  
Surface diffusion can occur in parallel with Knudsen 

diffusion. It occurs if the diffusing molecules adsorbed on 
the pore walls of the membrane and migrates along the pore 
surface. Solution-diffusion separation relies on the physical-
chemical interaction of gases and the dense membrane that 
determine the amount of gas which accumulates in the 
membrane matrix [9].  

In this study gas permeation behaviour from γ-alumina 
mesoporous ceramic membrane with 15 nm average pore 
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size was studied at permeation temperature range of 25 0C - 
450 0C and feed pressure range 0.05 to 10 barg.  

II. EXPERIMENTAL 
This experiment was carried out with a γ-alumina 

mesoporous tubular ceramic membrane supplied by 
Ceramiques Techniques et Industrielles (CTI SA) France. It 
consists of 77% α-alumina and 23% TiO2 with a nominal 
pore size of 15 nm and a porosity of 45%. The membrane 
has a permeable length of 348 mm with I.D and O.D of 7 
and 10 mm respectively. Fig. 1 shows a SEM image of the 
cross section of the membrane.  

 
Figure 1. SEM image of the cross section of ceramic membrane 

Table 1 summarizes the single gases used for the 
permeation test experiment. The gases were supplied by 
BOC UK. Gas permeance was measured under steady-state 
conditions using a tubular stainless steel membrane reactor 
with the retentate valve fully opened. The reactor is 
enclosed by a heating tape jacket Fig. 2, and the permeate 
flow tube was connected to the flowmeter to record gas 
flow rate.  

TABLE I. SINGLE GASES USED FOR PERMEATION TESTS 

 
Gas 

Molecular 
mass 
(g/mol) 

Kinetic 
diameter 
(Å) 

Tested 
pressure 
range (barg) 

Tested 
temperature 
range (0C) 

H2 2 2.89 0.05-10 25-450 
He 4 2.6 0.05-10 25-450 
CH4 16 3.82 0.05-10 25-450 
N2 28 3.64 0.05-10 25-450 
Ar 40 3.7 0.05-10 25-450 
CO2 44 3.3 0.05-10 25-450 

 

Pressure gauge

Permeate

Retentate

 
Figure 2. Pictorial View of the experimental arrangement for the 

membrane reactor. 

III. RESULTS AND DISCUSSION 
Different gas flow rates and feed pressure relationship 

was obtained from γ-alumina membrane at 165 0C (Fig. 3). 
This indicates a typical example of the permeation 
behaviour of single gases in mesoporous membranes. The 
pressure tested were between 0.1 to 1.0 barg and was found 
that the flow rate increases linearly with increasing feed 
pressure with good regression fits which indicates the 
presence of viscous flow. But He and H2 were kinetically 
activated whereas CH4, N2 and CO2 followed their 
molecular weight parameters. Fig. 4 shows the relationship 
between gas permeance and molecular weight in γ-alumina 
membrane at 450 0C. The measured permeances of the gas 
species (He, N2 and CO2) are inversely proportional to the 
square root of molecular weight as expressed in Eq. (4). 
However, (Ar and CH4) deviated from the linear 
relationship. 

Fig. 5 shows CO2 flow rates and temperature 
relationship in γ-alumina membrane at different feed 
pressures. In the case of 0.05 and 0.15 barg a slight 
decrease of flow rate was observed between 165 to 450 0C. 
Also, for 0.45 to 0.85 barg the flow rate is almost constant 
for the entire temperature increase which is in good 
agreement with the expected Knudsen diffusion [12]. In 
general, flow rate increases as the pressure increases. Gas 
permeance of (N2 and CO2) and temperature relationship in 
γ-alumina membrane at 0.1 barg (Fig. 6) was almost 
constant due to the existance of knudsen diffusion. A slight 
decrease in permeance was obtained for He. 
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experiments, it can be concluded that the permeation 
behaviour of the tested gases in mesoporous ceramic 
membranes reveals the existence of both Knudsen diffusion 
and viscous flow mechanisms. 
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