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Abstract—In this paper, we investigate a class of Li é nard type 
p-Laplacian equation on times scales by generalized Mawhin’s 
continuation theorems, under suitable conditions, we ensure 
that at least one periodic solution to this kind of p-Laplacian 
equation on time scales exist. 
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I. INTRODUCTION 

Li é nard equations can be derived from many fields, 
such as mechanics， engineering technique fields, physics, 
and so on, and is important in describing fluid mechanical 
and nonlinear elastic mechanical phenomena.  

Many authors have contributed to the theory of the 
equations with respect to existence of periodic solutions 
(see e.g. [1–6] and the reference therein), during the past 
several years.  

The important and useful tools to study this class of 
differential equations are Mawhin’s continuation theorem, 
generalized polar coordinates, Leary-Schauder degree 
theory and many fixed point theory.  

Mawhin’s continuation theorems has been extensivly 
used for getting the existence of periodic solutions to this 
class equation.  

For example, using Mawhin’s continuation theorem, 
Cheung and Ren considered the existence of T-periodic 
solutions to a Li é nard type p-Laplacian equation with a 
deviating argument in [7],  

( ( ( ))) ( ( )) ( ) ( ( ( ))) ( )p x t F x t x t G x t t E tϕ τ′ ′ ′+ + − = ,  

and some results for the existence of periodic solutions 
were got. Lu investigated the existence of periodic solutions 
for a p-Laplacian Li é nard differential equation with a 
deviating argument by using Mawhin’s continuation 
theorem in [8].  

Du and Zhao [9] introduce us the existence of periodic 
solution to a p-Laplacian Li é nard equation by means of 
generalized Mawhin’s continuation theorem. Although the 
results of this class of differential equation are plentiful, the 
argument of periodic solutions on time scales hasn’t got 
much attention, see [4, 5, 10–14].  

In [11], Li and Zhang considered the periodic solutions 
for a periodic mutualism model on a time scale T  by 
employing Mawhin’s continuation theorem, and obtained 
three sufficient criteria.  

In this paper, we will systematically investigate the 
existence of periodic solutions of the Li é nard p-Laplacian 
equation  

( ( ( ))) ( ( )) ( ) ( ( ( ))) ( )p x t f x t x t g x t t e tϕ τΔ Δ Δ+ + − =       (1) 

on a time scales T .  Our technique is motivated by that used 
in [14], and we applying it to investigate the existence of 
periodic solutions for (1.1).  

The setup of this paper is as following. In the coming 
section, we present some lemmas and definitions on time 
scales. In Section 3, we systematically explore the existence 
of periodic solutions of the Li é nard type p-Laplacian 
equation on time scales.  

II. PRELIMINARY 
In this section, we briefly give some basic definitions, 

lemmas on time scales which are used in the follows. Let 
T  be a time scale (a nonempty closed subset of R ). The 
forward and backward jump operators T Tσ ρ, : →  and 

the graininess T Rμ +: → . 
Definition 2.1. ([15]) Let X  and Z  be two Banach 

spaces with norms X|| ⋅ || ,  Z|| ⋅ || ,  respectively. A 
continuous operator  M X domM Z: ∩ →  

is said to be quasi-linear if   
(i) ( )ImM M X domM:= ∩  is a closed subset of 

Z ;   
(ii) { 0}KerM x X domM Mx:= ∈ ∩ : =  is 

linearly homeomorphic to nR ,  n < ∞.  
Definition 2.2. ([15]) Let XΩ⊂  be an open and 

bounded set with the origin θ ∈Ω.  N Zλ :Ω→ ,  

[0 1]λ∈ ,  is said to be M − compact in Ω  if there exists 

subset 1Z  of Z  satisfying 1dimZ dimKerM=  and an 
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operator 2[0 1]R X: Ω× , →  being continuous and 
compact such that for [0 1]λ∈ , ,   

(a) ( ) ( ) ( )I Q N ImM I Q Zλ− Ω ⊂ ⊂ − ,   
(b) 0 (0 1) 0QN x QNxλ λ= , ∈ , ⇔ = ,   

(c) ( 0) 0R ⋅, ≡  and ( ) ( )R I P
λ λ

λ Σ Σ⋅, | = − | ,   

(d) ( ( )] ( ) [0 1]M P R I Q Nλλ λ+ ⋅, = − , ∈ , ,   
where 2X  is the complement space of KerM  in X ,  

i.e., 

2X KerM X= ⊕ , P Q, are two projectors satisfying 

ImP KerM= ,  1ImQ Z= ,  1N N= ,  

{ }x Mx N xλ λΣ = ∈Ω : = .  
Lemma 2.1. ([15]) Let X  and Z  be two Banach 

spaces with norms X|| ⋅ || ,  Z|| ⋅ ||  respectively and XΩ⊂  
be an open and bounded nonempty set. Suppose 
M X domM Z: ∩ → is quasi-linear and 

N Zλ :Ω→ ,  [0 1]λ∈ ,  is M − compact in Ω.  In 
addition, if the following conditions hold:  

( 1H ) ( ) (0 1)Mx N x xλ λ≠ ,∀ , ∈∂Ω× , ; ( 2H ) 

0QNx x KerM≠ ,∀ ∈ ∩∂Ω ; ( 3H ) 
{ 0} 0deg JQN KerM,Ω∩ , ≠ ,  
J ImQ KerM: →  is a homeomorphism. Then the 

abstract equation Mx Nx=  has at least one solution in 

domM ∩Ω.  

III. MAIN RESULTS 
For convenience of applying Lemma 2.3, we denote 

1 1{ ( )T rdX C x x C T R= = | ∈ , ,  

( ) ( ) ( ) ( )}x t T x t x t T x tΔ Δ+ = , + = , 

{ ( ) ( ) ( )}T rdZ C x x C T R x t T x t= = | ∈ , , + =  

0 0 0 [0 ]
max{ ( ) } max ( ) [0 ] [0 ]Rt T

x x x t x x t T T TΔ

∈ ,
|| ||= || || , || || , || || = | |, , := , ∩ ,  

where [0 ]RT,  denote the interval [0 ]T,  on R.  Then the 

operators M Nλ,  are defined by 

( )( ) ( ( ( )))pM domM X Z Mx t x tϕ Δ Δ: ∩ → , = ,     (2) 

( )( ) ( ( )) ( ) ( ( ( ))) ( ) [01]N X Z N x t f x t x t g x t t e tλ λ λ λ τ λ λΔ: → , =− − − + , ∈ , ,   (3) 

where 1{ ( ( )) }p TdomM x X x t Cϕ Δ= ∈ | ∈ ;  

( )f g C R R, ∈ , ;   
( )e C T Rτ, ∈ , , ( ) ( ) ( ) ( )e t T e t t T tτ τ+ = , + = .  Let 

( ( ) ( ) ( ( ))) ( ( )) ( ) ( ( ( ))) ( )F t x t x t x t t f x t x t g x t t e tτ τΔ Δ, , , − =− − − + ,    (4) 

then N x Fλ λ= .  By (2) and (3), Eq. (1) is equivalent to 

the operator equation Mx Nx= ,  where 1N N= .  Then 
we have  

{ }KerM x X x a R R= ∈ | = ∈ ≅ ,  

0
{ ( ) 0}

T
ImM z Z z s s= ∈ | Δ = .∫  

Then we have the following Lemma.  
Lemma 3.1.  Let M  be as defined by (2). Then M  is 

a quasi-linear operator. For all t T∈ ,  define the operator 
P Q,  by  

0

1( )( ) (0) ( )( ) ( )
T

P X KerM Px t x Q Z R QZ t z s s
T

: → , = , : → , = Δ∫
 

Lemma 3.2. If ( )f g C R R, ∈ , ,  and ( )e C T Rτ, ∈ ,  
with ( ) ( )e t T e t+ = ,  ( ) ( )t T tτ τ+ = , then Nλ  is 
M − compact. 

Proof Let 1Z ImQ= .  For any bounded set 

XΩ⊂ ≠∅,  define [0 1] ,R KerP: Ω× , →  

0 0
( )( ) [ ( )( ) ] [0 1]

t s

p xR x t a F QF r r sλ ϕ λ λ, = + − Δ Δ , ∈ , ,∫ ∫ where 

F  is defined by （3） xa  is a constant related to x.  Let  

0 0
( ) [ ( )( ) ]

t s

pG R R G a a F QF r r sϕ λ: → , = + − Δ Δ .∫ ∫  

Since G  is continuous and increasing about a,  and let  

[0 ] 0
max ( )( )

s

s TA F QF r rλ∈ ,= − Δ ,∫  

[0 ] 0
min ( )( )

s

s TB F QF r rλ∈ ,= − Δ ,∫  

then ( ) 0 ( ) 0G A G B− ≤ , − ≥ ,  so we can choose a  
satisfied ( ) 0G a = .  From above, we know 

[ ]xa A B∈ − ,−  exist and unique, so ( )( )R x tλ,  is well 
defined. It is easy to prove that ( )R x λ,  is relatively 

compact on [0 1]Ω× , .   
Step 1. Since 2Q Q= ,  we have 

( ) ( ) 0Q I Q Nλ− Ω = ,  so  

( ) ( )I Q N KerQ ImMλ− Ω ⊂ = .  

On the other hand, z ImM∀ ∈ ,  clearly, 0Qz = ,  so 
( )z z Qz I Q z= − = − ,  then ( )z I Q Z∈ − .  So we have 

( ) ( ) ( )I Q N ImM I Q Zλ− Ω ⊂ ⊂ − .  
Step 2. We show that: 

0 (0 1) 0QN x QNx xλ λ= , ∈ , ⇔ = ,∀ ∈Ω.   
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Step 3. When 0λ = ,  since [ ]xa A B∈ − ,− ,  then there 

exist 0xa = .  For 0xa = ,  we have ( 0)( ) 0R x t, ≡ .  

{ }x x Mx N xλ λ∀ ∈Σ = ∈Ω : = ,  we 

have ( ( ( )))p x t Fϕ λΔ Δ =  and 1
0

( ( ( ))) 0
T

pTQF x t tϕ Δ Δ= Δ = .∫   

For 

0 0
( )( ) [ ( )( ) ]

t s

q xR x t a F QF r r sλ ϕ λ, = + − Δ Δ ,∫ ∫ take 

( (0))x pa xϕ Δ= − ,  we obtain 

( )( )R x tλ,  
0 0

[ ( (0)) ( )( ) ]
t s

q p x F QF r r sϕ ϕ λΔ= − + − Δ Δ∫ ∫  

0
[ ( ( ))]

t

q p x s sϕ ϕ Δ= Δ∫  ( ) (0) ( ) ( )x t x I P x t= − = − .  

Step 4. x∀ ∈Ω,  we have  

[ ( )]( )M Px R x tλ+ ,

0 0
( ([ (0) [ ( (0)) ( )( ) ] ) )

t s

p q px x F QF r r sϕ ϕ ϕ λΔ Δ Δ= + − + − Δ Δ∫ ∫  

0
( ( [ ( (0)) ( )( ) ])

t

p q p x F QF r rϕ ϕ ϕ λΔ Δ= − + − Δ∫  

0
[ ( (0)) ( )( ) ]

t

p x F QF r rϕ λΔ Δ= − + − Δ∫  

( )( ) ( ) ( )F QF t N QN x tλ λλ= − = − .  

 Hence, Nλ  is M − compact in Ω.   
Theorem 3.1.  Suppose ( )f g C R R, ∈ , ;  
( ) ( )e t C T Rτ, ∈ ,  with 

 ( ) ( )e t e t T= +  and ( ) ( )t t Tτ τ= + ,  there exist 

constant 1d ,  assume that the following conditions 

(i) 1( ( )) ( ) 0 when ( ( ))f u t u t u t t dτΔ > , | − |≥ ,  

(ii) 0( )lim 0g u e
uu

r−| |
| || |→+∞

= > ,   

(iii)
2
1 max ( ) 1 if 2

p
pT f u pλ
−
− | |≤ , =  hold. Then Eq. 

(1) has at least one T-periodic solution. 
Proof  We complete the proof by three steps.  
Step 1. Let 

1 { (0 1)}x domM Mx N xλ λΩ = ∈ : = , ∈ , .  We claim 

that 1Ω  is a bounded set. If 1x∈Ω ,  then Mx N xλ= ,  
i.e.,  

( ( ( ))) ( ( )) ( ) ( ( ( ))) ( )p x t f x t x t g x t t e tϕ λ λ τ λΔ Δ Δ+ + − = .    (5) 

Integrating both sides of (5) over [0 ]T, ,  we have  

0 0 0
( ( )) ( ) ( ( ( ))) ( )

T T T
f x s x s s g x s s s e s sτΔ Δ = − − Δ + Δ ,∫ ∫ ∫  

that is,  

0 0
( ( )) ( ) [ ( ( ( ))) ( )]

T T
f x s x s s g x s s e s sτΔ Δ = − − − Δ ,∫ ∫        (6) 

then we have 

0
[ ( ( )) ( ) ( ( ( ))) ( )] 0

T
f x s x s g x s s e s sτΔ + − − Δ = .∫  

There must exist some ξ  such that  

( ( )) ( ) ( ( ( ))) ( ) 0f x x g x eξ ξ ξ τ ξ ξΔ + − − ≤ .  
From the assumption (i) and (ii), we have  

1( ( )) ( ) 0 ( ( ))f x x x dξ ξ ξ τ ξΔ > , | − |≥ ,  

and there exist constants 2 0d >  and 0ε >  such that  

2( ( ( ))) ( ) ( ) ( ( )) 0 ( ( ))g x e r x x dξ τ ξ ξ ε ξ τ ξ ξ τ ξ− − = + | − |> , | − |≥ .  

So when 2( ( ))x dξ τ ξ| − |≥ ,  we obtain  

( ( )) ( )f x xξ ξΔ  

( ( ( ))) ( )g x eξ τ ξ ξ≤ − − + 0( ( ( )))g x eξ τ ξ≤ − − + | |  0≤  

Then we get 1 2( ( )) max{ }x d dξ τ ξ| − |≤ , ,  and  

1 20 0
( ) ( ( )) ( ) max{ } ( )

T T
x t x x s s d d x s sξ τ ξ Δ Δ| |≤| − | + | | Δ ≤ , + | | Δ .∫ ∫  

Take the absolute value of both sides of the equation 
(3.4), and integrating it over [0 ]T, ,   

1

0
( )

T px s sΔ −| | Δ∫  

0 0
( ( )) ( ) [ ( ( ( ))) ( )]

T T
f x s x s s g x s s e s sλ λ τΔ≤ | | Δ + | − − | Δ∫ ∫   

0[0 ] [0 ]
max ( ( )) ( ) max ( ( ( ))) ( )

T

t T t T
f x t x s s T g x t t e tλ λ τΔ

∈ , ∈ ,
≤ | | | | Δ + | − − |∫       (7) 

By H o&& lder inequality, and combining (7) we have  
21

1 11

0 0
( ) ( ( ) )

p
p p

T T px s s x s s T
−

− −Δ Δ −| | Δ ≤ | | Δ .∫ ∫                (8) 

Substituting above inequality into (8) we obtain  
2 1
1 11 1

0 0[0 ]
( ) max ( ( )) ( ( ) )

p
p p

T Tp p

t T
x s s T f x t x s sλ

−
− −Δ − Δ −

∈ ,
| | Δ ≤ | | | | Δ∫ ∫  

[0 ]
max ( ( ( ))) ( )
t T

T g x t t e tλ τ
∈ ,

+ | − − | .  

Since 1
1 1p− ≤ ,  so ( )x tΔ| |  bounded, that means there 

exist 2M  such that 2( )x t MΔ| |≤ ,  so we have 

1 2 2 0( ) max{ }x t d d TM M| |≤ , + := .  
Step 2 Let 2 { 0}x KerM QNxΩ = ∈ : = .  For 

2x∀ ∈Ω ,  then 

0( )x t a R= ∈ .  Since 

( ( )) ( ) ( ( ( )) ( )Nx f x t x t g x t t e tτΔ= − − − + ,  we have  

0 00 0 0

1 1 1( ) [ ( ) ( )] ( ) ( ) 0
T T T

QNx Nx s s g a e s s g a e s s
T T T

= Δ = − + Δ = − + Δ = .∫ ∫ ∫
 

From the assumption, 0( )lim 0g u e
uu

r−| |
| || |→+∞

= > ,  we have 

0 2a d| |≤ .  Take the open and bounded set 
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1 2Ω ⊃Ω ∪Ω ,  then the conditions 1( )H  and 2( )H  of 
Lemma 2.3 satisfied. 

Step 3 Define operator 
J ImQ KerM: → , ( )J a a a R= , ∈ .  Take 

0( ) (1 )H x a JQNxμ μ μ, = − − ,  
 then  

0 0 0 0
( ) (1 )( ( ) ( ) )

T
H a a g a e s sμ μ μ, = − − − + Δ ,∫  

2
0 0 0 0 0

( ) (1 ) ( ( ) ( ) ) 0
T

a H x a a g a e s sμ μ μ, = − − − + Δ > .∫  

So 
 0( ) 0H a μ, ≠ .  

{ 0} { 0} 0deg JQN KerM deg I KerM,Ω∩ , = − ,Ω∩ , ≠ .  
From the above prove, we can get the fact that Eq. (1) 

has at least one T − periodic solution. The proof is 
completed.  

Theorem 2. Assume the condition (ii) of Theorem 3.1 
holds, and the following conditions satisfied:  

(iv) there exists a continuous function ( )c t  on time 
scales T  satisfies  

( ( )) ( ) ( ( ( )) ( ) ( )f u t u t g u t t e t c tτΔ− − − + ≥ .  

(v) there exists a constant 1 0R >  such that  

10
[ ( ( )) ( ) ( ( ( )) ( )] 0 ( )

T

Lf u t u t g u t t e t t u R u t MτΔ Δ− − − + Δ > , ≥ ,| |≤ ,∫  

and  

10
[ ( ( )) ( ) ( ( ( )) ( )] 0 ( )

T

Mf u t u t g u t t e t t u R u t MτΔ Δ− − − + Δ < , ≤ − ,| |≤ .∫  

Then Eq. (1) has at least one T − periodic solution. 
Where  

[0 ]
min ( )L t T

u u t
∈ ,

:= , 
[0 ]

max ( )M t T
u u t

∈ ,
:= .  

Proof Step 1. Let 

1 { (0 1)}x domM Mx N xλ λΩ = ∈ : = , ∈ , .  We show 

that 1Ω  is a bounded set. If 1x∈Ω ,  then Mx N xλ= ,  
i.e.,  

( ( ( ))) ( ( )) ( ) ( ( ( ))) ( )p x t f x t x t g x t t e tϕ λ λ τ λΔ Δ Δ+ + − = .  

From the definition of operator Q,  we know that 

( ) ( ) 0QMx t QN x tλ= = ,  that is ( ) 0QNx t = .  The 
operator Nx  is bounded from below by c  on T ,  so we 
have the 
inequality: ( ) ( ) 2 ( ) [0 ]Nx t Nx t c t t T−| |≤ + ,∀ ∈ , , where 

we denote ( ) max{ ( ) 0}c t c t− = − , .  Combining the 
condition ( )iv  we obtain  

0 00 0 0
( ( ( ))) ( ) ( ) 2 ( ) 2

T T T

p x t t Nx t t Nx t t T c t T cϕ λΔ Δ − −| | Δ = | | Δ ≤ Δ + | | = | | ,∫ ∫ ∫  

that is 1
00

( ) 2
T px t t T cΔ − −| | Δ ≤ | | ,∫ then there  exist 

a constant 2M  such that 2( )x t MΔ| |≤ .  From the 

condition (v), if 1 1( or )L Mx R x R≤ ≥ ,  we know  

0 0
( ) 0( or ( ) 0)

T T
Nx t t Nx t tΔ < Δ > ,∫ ∫ so 

1 1( or )M Lx R x R> − < .  

Clearly, we have  
0

( )
T

M Lx x x t tΔ≤ + | | Δ .∫ We can get 

1 2 1 2( ) L MR M T x x R M T− + < < < + ,  

 that means 0 1 2x R M T| | < + .  The next two steps are 
similar to the proof of Theorem 3.1, and then we can 
obtained Eq. (1) has at least one T − periodic solution. The 
proof is completed.  
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