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For analysis of contingency tables with large sample size, classical approaches using approximate methods
have high power. However, when the sample size is small or some cells have frequencies less than 5, classical
approaches are so conservative. Also asymptotic behavior may be poor when the table contains small counts.
So, Bayesian test of independence for two-way contingency tables with ordinal variables is considered. The
conditional independence of two ordinal variables given values of a controlling variable is also considered.
To do these tests, gamma and partial gamma are used as association parameters for ordinal variables. Since
gamma has a complex posterior form, it is intractable to compute directly the necessary inferential measures.
So, a Dirichlet distribution is used as a prior distribution for the vector of cell probabilities, then the use of
computational methods such as the Monte Carlo algorithm is introduced to generate samples from posterior
distribution of gamma. Also, the Bayesian P-value and Bayes factor are obtained. In a simulation study, the
choice of appropriate prior distribution for gamma is discussed and also the performance of gamma is compared
to that of kappa. It is shown that, in contingency tables with ordinal variables, it is better to apply gamma as a
measure of association. Some sensitivity analysis to the choice of prior are also performed on real applications.
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1. Introduction

Many different methods have been proposed for testing independence and conditional independence
of two ordinal variables. For systematic reviews, see the books of Agresti (1984, 2002) and Clogg
and Shihadeh (1994) and also McCullagh and Nelder (1989, pp.151-155). However, despite recent
intensive interest in using the notion of conditional independence (see Wermuth and Cox, 1998a
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and 1998b) to simplify multivariate systems (Edwards, 1995; Cox and Wermuth, 1996; Lauritzen,
1996; Wermuth, 1998) such possibilities have not been set out in detail for Bayesian approach of
testing independence of ordinal variables.

A commonly used measure of association in two-way contingency tables where both the row
and column variables are ordinal is Goodman and Kruskal’s γ . It was introduced in the first paper of
a series of four papers by Goodman and Kruskal (1954, 1959, 1963, 1972), which were later pub-
lished together as a book (Goodman and Kruskal, 1979). The measure γ has since become a familiar
measure of ordinal association for social, behavioral and medical scientists; see, for example, Free-
man (1986) and Gonzalez and Nelson (1996). Also partial γ is a measure of partial association
often used for analyzing a three-way contingency table with two ordinal responses and a controlling
variable.

The measure γ is constructed based on the number of concordant and discordant pairs of obser-
vations in a sample. Denoting the ordinal row and column variables in a contingency table by X and
Y , respectively, a pair of observations is concordant if the member that ranks higher on X also ranks
higher on Y , and discordant if the member that ranks higher on X ranks lower on Y . Ties, namely
pairs of observations that have equal values of X or equal values of Y , are ignored by γ .

In contingency tables when sample sizes are small, approximate methods, such as chi-squared
approximation, are not valid, and other methods such as exact inference should be used. These
methods use distributions determined exactly rather than as large-sample approximations. The P-
value for exact test contingency tables is defined as the set of tables (with the same sample size) that
are no more likely to occur than the table observed. So computing P-value for these tables when the
sample sizes and/or dimensions of tables increased, is intractable and time-consuming.

Special algorithms and software for computing exact tests for these tables are widely available
(e.g., Mehta and Patel, 1983). We recommend these tests when asymptotic approximations may
be invalid. However, computing time increases exponentially as n or number of levels of variables
increases. One can use Monte Carlo to sample randomly from the set of tables with the given sample
size to reduce the time. The estimated P-value is then the sample proportion of tables having test
statistic value at least as large as the value observed. As dimensions of table increase, the number
of possible values for any test statistic tends to increase. Thus, the conservativeness issue for testing
conditional independence or independence becomes problematic (Agresti, 2002).

Problems arising for calculating P-value and also its conservative nature of rejecting H0 lead us
to think about a Bayesian approach which solves these problems.

In this paper we like to introduce Bayesian approaches for testing conditional independence
(H0: all partial association parameters are equal to 0) versus existence of conditional association
in a three-way contingency table with two ordinal responses, X and Y , and a controlling variable,
Z, with K categories. Our approaches utilize Bayesian criteria such as Bayes factor or Bayesian
P-value (Agresti and Hitchcock, 2005) for testing this hypothesis. These approaches are not related
to sample size and dimension of table, and so Bayesian approaches, considered in this paper, may
be a better option than classical approaches.

In a simulation study we investigate how to choose, in an objective view, the prior distribution.
Also in another simulation study, we compare the performance of two measures of association, γ
(which considers the ordinality of the variables) and κ (which ignores the ordinality of the variables
and considers them as nominal) and show that the performance of γ based on the posterior proba-
bilities is better than κ when variables are ordinal (for a Bayesian approach using κ for measuring
agreement between raters, see Broomeling, 2009, page 42).
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Section 2 gives a review of the concept of conditional independence in three-way contingency
tables with ordinal responses. The details of the Bayesian approach for testing conditional indepen-
dence in three-way contingency tables with two ordinal responses are given in Section 3. In section
4, some simulation studies are given in order to investigate the behavior of the prior distribution of
γ . In section 5, some real applications are analyzed. In the end, some conclusions are given.

2. Conditional independence in three-way contingency tables with ordinal responses

An important part of most studies is the choice of controlling variables. In studying the relation
between responses X and Y , one should control for any covariate that can influence that relation-
ship. This involves using some mechanism to hold the covariate constant. Otherwise, an observed
relationship between X and Y may actually reflect effects of that covariate on both X and Y . The
relationship between X and Y then shows confounding.

In this section we discuss test of conditional independence between ordinal responses X and Y in
each category of a controlling variable, say Z. For simplicity, we consider a single control variable,
but generalization to more controlling variables may be done in the same manner.

We first define γ(k) as a measure of partial ordinal association. We illustrate it for I × J ×K

tables, where K denotes the number of categories of a control variable, Z. Let {πi jk} denote the
joint probability distribution in this table. Within a fixed category k of Z, in order to define partial
association, γ(k), we must describe the partial probabilities of concordance and discordance in each
partial table k. For two independent observations from the kth partial table, the partial probabilities
of concordance and discordance are denoted by ΠC(k) and ΠD(k), respectively, and are defined as:

ΠC(k) = 2∑
i

∑
j

πi jk(∑
h>i

∑
t> j

πhtk),and ΠD(k) = 2∑
i

∑
j

πi jk(∑
h>i

∑
t< j

πhtk).

Conditional on the two independent observations not being tied on both ordinal variables in each
category of control variable (Z), the partial probabilities of concordance and discordance are given

by
ΠC(k)

ΠC(k)+ΠD(k)
and

ΠD(k)

ΠC(k)+ΠD(k)
, respectively. So, γ(k) as a measure of partial association in table k is

the difference between these partial probabilities, i.e.,

γ(k) =
ΠC(k)−ΠD(k)

ΠC(k) +ΠD(k)

; k = 1,2, ...,K.

If there are no control variables, we define γ as a measure of association between two ordinal
variables. In this case, the index of k is removed from the above formula.

2.1. Conditional Independence

Consider an I × J ×K table that describes the relationship between ordinal responses, X and Y ,
controlling for Z. If X and Y are independent in partial table k, then X and Y are called conditionally
independent at level k of Z.

More generally, X and Y are said to be conditionally independent given Z when they are condi-
tionally independent at every level of Z.
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Suppose πi jk = P(X = i, Y = j, Z = k) denotes the joint probability distribution for three vari-
ables, X , Y and Z. Then

πi jk = P(X = i, Z = k)P(Y = j|X = i, Z = k),

which under conditional independence of X and Y, given Z, equals

πi jk = πi.k
P(Y = j, Z = k)

P(Z = k)
=

πi.kπ
. jk

π
..k

; f or all i, j, and k.

where πi.k is the marginal distribution of X and Z, π
. jk are marginal probabilities of Y and Z and

π
..k are marginal probabilities of Z. Also conditional independence implies that γ(k) = 0, for k =

1,2, ...,K, but the converse of this statement may not be true.

3. The Bayesian approach for testing conditional independence

First, consider a three-way contingency table having two ordinal responses, X with I categories
and Y with J categories, and a controlling variable Z with K categories. The number of sub-
jects in all I × J subtables is known. Our interest is on testing conditional independence (H0 :
γ(1) = ... = γ(K) = 0) against H1 : γ(k) 6= 0, for at least one k, k = 1, ...,K. Suppose cell counts
from different partial tables are independent. Let Ni jk, i = 1,2, ..., I; j = 1,2, ...,J, be the number
of events in the cell at the intersection of ith row and jth column in table k, k = 1,2, ...,K, and
Nk = (N11k, N12k, ..., N1Jk, ..., NIJk)

′ denotes vector of multinomial random variables with respec-
tive indexes nk = ∑i ∑ j ni jk (where ni jk is the observed value of Ni jk and nk is a known value) and
probability vector parameters Πk = (π11k,π12k, ...,π1Jk, ..., πIJk)

′ (where ∑i ∑ j πi jk = 1). The para-
metric vector of interest is the vector of partial associations between two ordinal responses (X and
Y ), Γ = (γ(1), ...., γ(k)), each element of which was defined in the previous section.

For testing conditional independence using a Bayesian approach, the values of π0 and π1, prior
probabilities of H0 and H1, are chosen such that π0 + π1 = 1. A proper prior, denoted by g(Γ)

defined on Γ1 = [−1,1]K = [−1,1]× ...× [−1,1] (Robert, 2007), should be also chosen. We consider
g(Γ) = g1(γ(1))× ...×gK(γ(K)), where gk(γ(k)); k = 1, ...,K, are proper distributions on [−1,1]. So,
the Bayes factor in favor of H0 and Bayesian P-value for this test are defined as,

B01 =
π0 f (N|Γ = 0)

π1m(N)
,and Bayesian P− value =

π0 f (N|Γ = 0)

π0 f (N|Γ = 0)+π1m(N)
,

respectively, where f (N|Γ = 0)= ∏K
k=1 f (Nk|γ(k) = 0) and

m(N) =
∫

Γ1

f (N|Γ)g(Γ)dΓ =
∫

[
K

∏
k=1

f (Nk|γ(k))gk(γ(k))]dΓ

=
K

∏
k=1

∫ 1

−1
f (Nk|γ(k))gk(γ(k))dγ(k) =

K

∏
k=1

mk(Nk).

By considering π0 = 1
2 , the Bayes factor and Bayesian P-value for this test are given by the following

formula, respectively,

B01 =
∏K

k=1 f (Nk|γ(k) = 0)

∏K
k=1 mk(Nk)

, (3.1)
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BayesianP− value =
∏K

k=1 f (Nk|γ(k) = 0)

∏K
k=1 f (Nk|γ(k) = 0)+∏K

k=1 mk(Nk)
=

1

1+ 1
B01

. (3.2)

For testing conditional independence in this table, by use of a Bayesian approach, the posterior
probability of H0 and Bayes factor as some evidence must be computed, so we need to determine the
posterior distribution of Γ. For computing the posterior distribution of Γ, it is enough to determine
the posterior distribution of each γ(k). Computing this distribution (π(γ(k)|Nk)) is very intractable
due to the complex form of γ(k). So we first obtain the posterior distribution of Πk’s and then by use
of it and the relationship between Πk and γ(k), the posterior probability of γ(k) will be computed.

For determining the posterior probability of Πk, we consider a Dirichlet distribution with ak =

(α11k, ....,αIJk) as a prior distribution for Πk, i.e.,

π((π11k,π12k, ...,πIJk)|(α11k, ...,αIJk)) ∼ Dirich(ak).

Since the Dirichlet distribution is a conjugate prior for multinomial distribution, the posterior
distribution of Πk is a Dirichlet distribution with vector of parameters a∗

k = (α∗
11k, ...,α

∗
IJk), where

α∗
i jk = αi jk +Ni jk; i = 1, ..., I, j = 1, ...,J and k = 1, ...,K. So the posterior distribution has the form,

π((π11k,π12k, ...,πIJk)|Nk,(α11k, ..., αIJk)) =
1

B(a∗k)
∏

i
∏

j
παi jk+Ni jk

i jk
,

where B(a∗k) is the multinomial beta function, which can be expressed in terms of the gamma func-
tion as,

B(a∗k) =
∏i ∏ j Γ(ai jk

∗)

Γ(∑i ∑ j ai jk
∗)

.

Now in order to determine the posterior distribution of γ(k), π(γ(k)|Nk), we can use the following
algorithm to achieve the posterior value of γ(k).

(1) Simulate Πk from a Dirichlet distribution with known vector of parameters ak =

(α11k, ...,αIJk). Then the prior values of γ(k) using Πk can be computed.
(2) Then simulate Π∗

k from a Dirichlet distribution with vector of parameters a∗
k =

(α∗
11k, ...,α

∗
IJk), where α∗

i jk = αi jk + Ni jk. Then the posterior values of γ(k) using Π∗
k can

be computed.
The algorithm is repeated until the desired number of samples is obtained.

The values of γ(k) that were generated in the first stage, give us information about the prior dis-
tribution of γ(k). By generating the posterior value of γ(k), the posterior distribution of γ(k) may be
obtained empirically.

3.1. Computing Bayes factor and Bayesian P-value

Consider a test of the conditional independence hypothesis in a three-way contingency table with
two ordinal responses, i.e., H0 : γ(1) = ... = γ(K) = 0. Let mi jk =

ni.kn
. jk

n
..k

be the maximum likelihood
estimates of πi jk under the conditional independence model, where ni.k and n

. jk, respectively are
row and column marginal counts in table k and n

..k is the total number of subjects in each subtable.
In order to conduct a test of independence via the Bayesian approach, we need to compute

Bayes factor (3.1). For computing Bayes factor, we must determine denominator of equation (3.1).
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Under null hypothesis, the numerator of B01 is ∏K
k=1 f (Nk = nk|π̂i jk = mi jk). For determining the

denominator, we must compute,

m(N) =
∫

Γ1

f (N|Γ)g(Γ)dΓ, (3.3)

where g(.) is the prior distribution of Γ and Γ1 = [−1,1]K . In order to determine the prior distribution
of Γ, the prior distribution of each γ(k) must be obtained. So, we compute it using prior distribution
of Πk as follows. By use of the simulated values of Πk, from a Dirichlet distribution with vector of
parameters ak, and relationship between Πk and γ(k), the prior values of γ(k) are computed. This is
equivalent to the fact that prior distribution for γ(k) is obtained by a transformation of the assumed
prior distribution of Πk which is a Dirichlet Distribution. With these values of γ(k), prior distribution
of γ(k) are determined empirically. Since γ(k)’s are independent, then the prior distribution of Γ can
be obtained empirically.

This form of (3.3) helps us to approximate the mean of f (Nk|γ(k)) by Monte Carlo method,
using sample means of the computed prior values of γ(k)., i.e.,

mk(Nk) '
1
M

M

∑
i=1

f (Nk|γ
(i)
(k)

),

where M is the number of simulated Πk. So the value of B01 can be obtained and by use of (3.2),
we can obtain the Bayesian P-value.

3.2. The Bayesian approach for testing independence

In a similar manner, the test of independence (H0 : γ = 0) against having association (H1 : γ 6= 0)
between two ordinal variables of a I×J contingency table with given sample size can be performed.
Suppose Ni j, i = 1,2, ..., I; j = 1,2, ...,J, is the number of events in the cell at the intersection of ith
row and jth column, and N = (N11,N12, ...,N1J, ...,NIJ)

′ denotes multinomial random variables with
respective indexes n = ∑i ∑ j ni j (where ni j denotes the cell frequency in the ith row and jth column
of the table) and probability vector parameters Π = (π11,π12, ...,π1J, ...,πIJ)

′ (where ∑i ∑ j πi j = 1).
For testing independence (H0) versus some association using a Bayesian approach, Bayes factor

and Bayesian P-value are defined as,

B01 =
f (N|γ = 0)

m(N)
, (3.4)

and,

BayesianP− value =
f (N|γ = 0)

f (N|γ = 0)+m(N)
=

1

1+ 1
B01

, (3.5)

respectively, where m(N) =
∫

Γ1
f (N|γ)g(γ)dγ .

By generating γ values by an algorithm similar to that outlined in the previous subsection, the
posterior distribution of γ may be obtained empirically. Also the Bayes factor and Bayesian P-value
for this test may be computed in a similar manner to (3.1) and (3.2) where the index k is removed.
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4. Simulation studies

In this section, we present some simulation studies to investigate the behavior of extracted prior
distribution for γ . Also the performance of γ is compared with that of κ (Cohen, 1960) for measuring
association of two ordinal variables (We have used R software for simulation studies).

At first we shall try to assess the behavior of prior distribution of γ in a 2 × 3 contingency
table. So, we consider a Dirichlet distribution as a prior distribution for vector of probabilities
Π = (π11,π12, · · · ,π23) with vector of parameters a = (a11,a12, · · · ,a23). We have chosen differ-
ent vectors of parameters (different a) in order to study the sensitivity of results with respect to
different priors. (all elements of a equal to α , Jeffrey’s prior when α = 0.05). Symmetric Dirichlet
distributions are often used when a Dirichlet prior has no prior knowledge favoring one compo-
nent over another. When α = 1, the symmetric Dirichlet distribution is equivalent to a uniform
distribution over all points in its support. Values of α above 1 refer to distributions that are dense,
evenly-distributed distributions, i.e. all probabilities returned are similar to each other. Values of α
below 1 refer to sparse distributions, i.e. most of the probabilities returned are close to 0, and most
of the mass is concentrated in a few of the probabilities. If we have some prior knowledge about
one or more components over another, then we may choose a Dirichlet distribution with different
parameters. In this case we allocate large values of αi’s to components that are more informative or
have high frequencies.

To see the effect of the above decisions on the prior densities of γ , Figure 1 shows the prior
distribution of γ for different values of the vector a. This figure indicates that symmetric Dirichlet
distribution with α = 1 is a low informative prior with highly dispersed distribution for γ . Also
in symmetric Dirichlet distribution, when α > 1 the prior distribution of γ is less dispersed and
generally as α (> 1) increases the prior distribution of γ is going to have low variance. For α < 1,
the prior values of γ are concentrated around 1 and −1.

If the vector of parameters a is chosen such that the large values of ai’s are allocated to the prob-
ability of diagonal cells in the table, then the prior distribution of γ would be skewed. Existence of
a positive association between two ordinal variables in a contingency table, indicates an increasing
trend between the two variables. Then the main diagonal would have more frequencies than the
other elements. So, if we want to determine prior distribution objectively, we shall allocate the large
ai j’s to cells about the main diagonal. This leads to a prior distribution for γ which is skewed to the
left.

Where there exists a negative value of the measure of association, there is a decreasing trend
between the two variables. This gives frequencies which are concentrated on the subordinate diag-
onal. So, we may allocate the large values of ai j’s to cells about the subordinate diagonal to have a
prior distribution for γ which is skewed to the right. In order to choose the Dirichlet distribution as
a prior distribution of vector Πk, one may use the symmetric Dirichlet distribution. One may choose
α such that for every real number ε > 0,

|π̂i jk(Bayes) − π̂i jk(classic)| < ε,

where π̂i jk(Bayes) is the Bayesian estimator of πi jk and π̂i jk(classic) is the classical estimator of πi jk,
i.e.,

|
α +Ni jk

N
..k + IJα

−
Ni jk

N
..k
| < ε.
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Fig. 1. Prior distribution of γ for different Dirichlet distributions with hyperparameters a = (a11,a12, · · · ,a23) in a 2×3
contingency table.

This means to have a low-informative prior, we need to choose a very small value for ε . By consid-
ering ε ≤ 1

N2
..k

, we can have

α ≤ [|N
..k −Ni jkIJ|−

IJ
N

..k
]−1

,

as 0 ≤ α , then we must choose α such that,

0 ≤ α ≤ {||N
..k −Ni jkIJ|−

IJ
N

..k
|}−1

.

In the second simulation study, we compare the performance of two measures of association γ and
κ . So a 3× 3 contingency table with N = 100 and different values of γ are chosen. In this study,

3000 3× 3 contingency tables are simulated and for each table, the value of κ(= ∑3
i=1(πii−πi.π.i)

1−∑3
i=1 πi.π.i

)

is computed. In order to compare the performance of γ and κ , a Dirichlet prior distribution with
vector of parameters a = (1,1, · · · ,1) is considered for vector of probabilities Π. This leads to a
noninformative prior for γ . Then the proportion of posterior events (γ > 0|N), (γ < 0|N), (κ > 0|N)
and (κ < 0|N) are reported in Table 1.

The results of Table 1 indicate that in contingency tables with ordinal variables, when there is a
positive association, both γ and κ detect the positive direction of association but κ underestimate
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Table 1. Prior and posterior means of γ and κ and proportion of times that different posterior events occur for 3000
simulated 3×3 contingency tables with two ordinal variables.

γ
(-0.33) (-0.12) (0) (0.23) (0.44)

E(γ) -0.4404 -0.1329 0.0016 0.2276 0.4385
E(κ) 0.0126 -0.0032 0.0004 0.1384 0.3118

E(γ|N) -0.4335 -0.1307 0.0015 0.2233 0.4321
E(κ|N) 0.0125 -0.0030 0.0005 0.1360 0.3061

p(γ > 0|N) 0.001 0.154 0.492 0.962 0.999
p(γ < 0|N) 0.999 0.846 0.508 0.038 0.001
p(κ > 0|N) 0.578 0.478 0.506 0.944 0.998
p(κ < 0|N) 0.422 0.522 0.496 0.056 0.002

Table 2. Effect of smoking on self reported health status five years later [Source: Nanny Wermuth and D. R. Cox, 1998,
On the Application of Conditional Independence to Ordinal Data. International Statistical Review 66: 181-199]

Smoking habits five years ago

Health status Never smoked Quit smoking 1-9 10-20 > 20 Total
very good 16 15 13 10 1 55

fair 73 75 59 81 29 317
bad 6 6 7 17 3 39

very bad 1 0 1 3 1 6
Total 96 96 80 111 34 417

the amount of association compared with that of γ , i.e. κ̂ < γ̂ . When there is a negative association
i.e. γ < 0 (γ =−0.33), the estimated values of κ indicate independence or positive association since
κ ignores the ordinal nature of variables. In such cases that there is a negative trend between two
ordinal variables, κ can not detect it and could be highly misleading for the test of independence.
Hence, there are situations in which γ truly rejects the independence hypothesis, but κ accepts it.
So, in contingency tables with variables that are ordinal in nature, it is more appropriate to apply
γ as a measure of association. Figure 2 shows posterior distributions of γ and κ . This confirms the
result of Table 1.

5. Real applications

We consider two real data sets.
Application 1: Table 2 shows a 4× 5 contingency table for two ordinal variables obtained for

417 adults in an epidemiological cohort study in Denmark. The variables are self reported health
status (i = 1, very good; i = 2, fair; i = 3, bad; i = 4, very bad), and habits concerning cigarette
smoking five years earlier ( j = 1, never smoked; j = 2, did not smoke then; j = 3,4, and 5 smoked
fewer than 10, between 10 and 20 and more than 20 cigarettes per day, respectively).
For this table the classical estimate of γ is γ̂ = 0.2415. In order to test for independence, H0 : γ = 0,
by use of classical methods, we must compute the P− value corresponding to this hypothesis. The
P−value to test for independence in these data is the probability of the set of tables that are no more
likely to occur than the table observed. This task is intractable in the classical frequentist context.
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Fig. 2. Posterior distributions of γ and κ for α = 1 and different values of γ (bold plot shows the distribution of κ and the
other shows that for Γ, the real value of γ is given in the label on the x-axis).

Table 3. Prior and posterior means of γ , posterior probabilities and Bayes factor in favor of no association for different
values of α .

α1 = α2 = ... = α20 = α
10−3 10−2 10−1 1 10

E(γ) -0.0034 -0.0011 -0.0102 -0.0091 -0.0081
var(γ) 0.9978 0.8861 0.3789 0.0533 0.0056
E(γ|N) 0.2412 0.2402 0.2386 0.2147 0.1155

π(γ ≥ 0|N) 0.9994 0.9995 0.9999 0.9986 0.9913
π(γ = 0|N) 0.00 0.00 0.00 0.00 0.00

B01 0.00 0.00 0.00 0.00 0.00

In order to perform a Bayesian test of independence in Table 2, we choose the Dirichlet distribution
as a prior distribution with several different values for a = (α1,α2, ...,α20), in order to conduct a
sensitivity analysis. Also we consider α1 = α2, ... = α20 = α . The results of Table 3, show expecta-
tion and variance of prior distributions for different values of α . This table also shows the posterior
mean of γ , posterior probability of γ ≥ 0, Bayesian P-value and Bayes factor. These results indicate
that for the values of α that are smaller than 1, the prior distributions are less informative than the
priors corresponding to values of α that are greater than 1 (due to the prior variance of γ). So, the
posterior means of γ corresponding to priors that are less informative, are similar to the classical
estimate of γ . But for the priors that are more informative (α = 10) than the others, the Bayesian
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Table 4. HPD credible sets of γ and their lengths for different values of α .

γ Length(γ)
α = 0.001 (0.1066, 0.3823) 0.2757
α = 0.01 (0.0954,0.3682) 0.2728
α = 0.1 (0.1005,0.3670) 0.2665
α = 1 (0.0792,0.3204) 0.2412

α = 10 (0.0179,0.2093) 0.1914

estimate of γ is far from the classical estimate. Also, the Bayesian methods indicate strong evidence
against the null hypothesis, due to the calculated values of Bayesian P-values and Bayes factors, i.e.,
smoking and health status are highly associated. Also in order to check sensitivity of the choice of
prior, we compute the highest posterior density (HPD) credible sets for different values of α and the
results are given in Table 4. These results indicate that the length of HPD credible sets correspond
to low informative priors (α ≤ 1) are larger than those of more informative priors (α > 1). Also for
α = 10 (corresponding to the most informative prior in this example), the HPD credible set does
not cover the classical estimate of γ (=0.2415).

Application 2: Table 5 shows the results of a randomized, double-blind clinical trial comparing an
active hypnotic drug with a placebo in patients who have insomnia problems. The response is the
patient’s reported time in minutes to fall asleep after going to bed. Patients responded before and
following a two-week treatment period. The subjects, receiving the two treatments, were regarded
as forming two independent samples.

In this table the classical estimate of Γ = (γ1,γ2) is (γ̂1, γ̂2) = (0.453,0.631) where γ1 is the par-
tial gamma for two responses of people who use active drug and γ2 is the partial gamma for people
who use placebo. In order to perform a Bayesian test of conditional independence in Table 5, we
have chosen independence Dirichlet distributions as prior distributions for the vector of probabili-
ties in each subtable. We have chosen different vectors of parameters (a1 and a2) in order to conduct
a sensitivity analysis with respect to different priors (see, table 6).

These results indicate that for the values of a that are smaller than 1, the prior distributions
are less informative than the priors corresponding to values of a that are greater than 1. So, the
posterior means of Γ corresponding to priors that are noninformative, are similar to the classical
estimate of Γ. But for priors that are more informative (a = 10), the Bayesian estimates of Γ are
significantly different from those of the classical estimates. Also, the Bayesian methods indicate
strong evidence against null hypothesis, due to the very low values of Bayesian P-values and Bayes
factors, i.e., the time that patients reported to fall asleep after going to bed before and following a two
week treatment period are not independent at both levels of treatment. Then, the time that patients
reported to fall asleep after going to bed before and following a two week treatment period are not
conditionally independent. So, to do any longitudinal analysis to study the effect of the hypnotic
drug on insomnia, one has to take into account the association between two responses (see Ganjali
and Rezaee, 2007). As this association is different for the two levels of treatment, this association
should be itself modelled as a function of treatment. By considering a Dirichlet distribution with
a = 1 for test of H0 : γ(2) = γ(1), we have E(γ(2)− γ(1)|N) = 0.18447, P(γ(2) > γ(1)|N) = 0.9228 and
the Bayes factor in favor of H0 is 0. Hence there is strong evidence against H0.
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Table 5. Time to falling asleep, by treatment and occasion, [Source: From S. F. Francom, C.Chuang-Stein, and J. R.
Landis, Statist. Med. 8, 571-582, (1989).]

Time to falling Asleep

Follow up
Treatment Initial < 20 [20,30) [30,60) ≥ 60

Active < 20 7 4 1 0
[20,30) 11 5 2 2
[30,60) 13 23 3 1
≥ 60 9 17 13 8

Placebo < 20 7 4 2 1
[20,30) 14 5 1 0
[30,60) 6 9 18 0
≥ 60 4 11 14 22

Table 6. Posterior mean and standard error of Γ = (γ
(1)

,γ
(2)

), Bayesian P-value and Bayes factor in favor of Γ = 0 for
different values of a.

α1 = α2 = ... = α16 = a

a 10−3 10−2 10−1 1 10
E(γ(1)|N1) 0.4555 0.4505 0.4418 0.3456 0.0745
E(γ(2)|N2) 0.63187 0.6291 0.6213 0.5393 0.2307

Posterior SE(γ(1)) 0.1044 0.1041 0.1021 0.1009 0.0684
Posterior SE(γ(2)) 0.0759 0.0753 0.0750 0.0711 0.0668

π(γ(1) = 0|N1) 0.0000 0.0000 0.0000 0.0000 0.0000
π(γ(2) = 0|N2) 0.0000 0.0000 0.0000 0.0000 0.0000

B01 0.0000 0.0000 0.0000 0.0000 0.0000

Conclusion

Although gamma, as a measure of association for two ordinal variables, is commonly used and it
is easy to compute, for tables with small observed values, where one prefers to adopt a Bayesian
approach, posterior distribution of gamma can not be characterized. In this paper we presented a
method and an algorithm where one is able to generate values of posterior distribution of gamma.
We performed Bayesian test of independence against association by Bayes factor and Bayesian P-
value. We also extended this approach to test for conditional independence of two ordinal variables,
given a controlling nominal variable. For considering more control variables, one may extend ΠC(k)
and ΠD(k) to ΠC(kw) and ΠD(kw), respectively, where k and w may be used for given categories of
two control variables.

In this paper, we investigated the behavior of the prior distribution for γ in a simulation study.
Also, the performance of γ is compared with that of κ . So, in contingency tables with ordinal
variables, if there is a positive trend, γ and κ perform in a similar manner, although γ̂ > κ̂ . When
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there is a negative trend, κ can not detect it and then can not reject the independence hypothesis.
So, in contingency tables with ordinal variables, it is better to apply γ as a measure of association.
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