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The Marshall-Olkin extended uniform distribution is introduced and studied by Jose and Krishna (2011). In
this paper some moments properties of generalized order statistics (gos) for this distribution are investigated
and results are deduced for order statistics and record values. In the last section, a characterization result is
presented.
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1. Introduction

Kamps (1995) introduced the unifying concept of generalized order statistics (gos), the use of such
concept has been steadily growing along the years. This is due to the fact that such concept describes
random variables arranged in ascending order of magnitude and includes important well known
concept that have been separately treated in statistical literature. Examples of such concepts are
the order statistics, sequential order statistics, progressive type II censored order statistics, record
values and Pfeifer’s records. Application is multifarious in a variety of disciplines and particularly
in reliability.

Let n≥ 2 be a given integer and m̃ = (m1,m2, . . . ,mn−1) ∈ℜn−1, k ≥ 1 be the parameters such that

γi = k+n− i+
n−1

∑
j=i

m j ≥ 0 for 1≤ i≤ n−1.

The random variables X(1,n, m̃,k),X(2,n, m̃,k), . . . ,X(n,n, m̃,k) are said to be generalized order
statistics from an absolutely continuous distribution function F() with the probability density fun-
tion (pd f ) f (), if their joint density function is of the form
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k
( n−1

∏
j=1

γ j

)( n−1

∏
i=1

[
1−F(xi)

]mi f (xi)
)[

1−F(xn)
]k−1 f (xn) (1.1)

on the cone F−1(0)< x1 ≤ x2 ≤ . . .≤ xn < F−1(1).

If mi = 0 (i = 1,2, . . . ,n− 1), k = 1, we obtain the joint pd f of the order statistics and for mi =

−1, k ∈ N, we get k− th record values.

A random variable X is said to have the Marshall-Olkin extended uniform distribution if its pd f is
of the form

f (x) =
αθ

[αθ +(1−α)x]2
, 0 < x < θ , α > 0 (1.2)

and corresponding d f

F(x) =
x

αθ +(1−α)x
, 0 < x < θ , α > 0 (1.3)

Now in view of (1.2) and (1.3), we have

θ F̄(x) = (θ − x)[αθ +(1−α)x] f (x) (1.4)

where, F̄(x) = 1−F(x).

The relation (1.4) will be utilized to establish recurrence relations for moments of gos.

2. Single Moments

Case I: γi 6= γ j; i, j = 1,2, . . . ,n−1.

In view of (1.1) the pd f of r− th generalized order statistic X(r,n, m̃,k) is

fX(r,n,m̃,k)(x) =Cr−1 f (x)
r

∑
i=1

ai(r)
[
F̄(x)

]γi−1 (2.1)

where,

Cr−1 =
r

∏
i=1

γi, γi = k+n− i+
n−1

∑
j=i

m j > 0

and

ai(r) =
r

∏
j=1
j 6=i

1
(γ j− γi)

, 1≤ i≤ r ≤ n.
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Theorem 2.1: For the Marshall-Olkin extended uniform distribution as given in (1.2) and n ∈
N, m̃ ∈ R, k > 0, 1≤ r ≤ n, p = 1,2, . . .

E
[
X p+2(r,n, m̃,k)

]
=

αθ 2

(1−α)
E
[
X p(r,n, m̃,k

]
+

θγr

(1−α)(p+1)
E
[
X p+1(r−1,n, m̃,k)

]
−θ [γr− (p+1)(1−2α)]

(1−α)(p+1)
E
[
X p+1(r,n, m̃,k)

]
(2.2)

Proof: We have by Athar and Islam (2004),

E
[
ξ{X(r,n, m̃,k)}

]
−E

[
ξ{X(r−1,n, m̃,k)}

]
=Cr−2

∫
∞

−∞

ξ
′(x)

r

∑
i=1

ai(r)
[
F̄(x)

]γi dx.

Let ξ (x) = xp+1, then

E
[
X p+1(r,n, m̃,k)

]
−E

[
X p+1(r−1,n, m̃,k)

]
=Cr−2 (p+1)

∫
∞

−∞

xp
r

∑
i=1

ai(r)
[
F̄(x)

]γi dx.

Now in view of (1.4), we have

E
[
X p+1(r,n, m̃,k)

]
−E

[
X p+1(r−1,n, m̃,k)

]
=

(p+1)
θγr

Cr−1

∫
θ

0
(θ − x)[αθ +(1−α)x]xp

r

∑
i=1

ai(r)
[
F̄(x)

]γi−1 f (x) dx.

After simplification, we get the result.

Case II: mi = m, i = 1,2, . . . ,n−1.

The pd f of X(r,n,m,k) is given as

fX(r,n,m,k)(x) =
Cr−1

(r−1)!
[
F̄(x)

]γr−1 f (x)gr−1
m
(
F(x)

)
, (2.3)

where,

Cr−1 =
r

∏
i=1

γi , γi = k+(n− i)(m+1),

hm(x) =

−
1

m+1
(1− x)m+1 , m 6=−1

− log(1− x) , m =−1
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and gm(x) = hm(x)−hm(0), x ∈ (0,1).

Theorem 2.2: For distribution as given in (1.2) and n ∈ N, m̃ ∈ R, k > 0, 1≤ r ≤ n, p = 1,2, . . .

E
[
X p+2(r,n,m,k)

]
=

αθ 2

(1−α)
E
[
X p(r,n,m,k)

]
+

θγr

(1−α)(p+1)
E
[
X p+1(r−1,n,m,k)

]

−θ [γr− (p+1)(1−2α)]

(1−α)(p+1)
E
[
X p+1(r,n,m,k)

]
(2.4)

Proof: It may be noted that for γi 6= γ j but at mi = m; i = 1,2, . . . ,n−1,

ai(r) =
1

(m+1)r−1 (−1)r−i 1
(i−1)!(r− i)!

Therefore the pd f of X(r,n, m̃,k) given in (2.1) reduces to (2.3) [c f Khan et al., 2006].

Hence it can be seen that (2.4) is the partial case of (2.2) and is obtained by replacing m̃ with m in
(2.2).

Remark 2.1: Recurrence relation for single moments of order statistics (at m = 0,k = 1) is

E(X p+2
r:n ) =

αθ 2

(1−α)
E(X p

r:n)+
θ(n− r+1)

(1−α)(p+1)
E(X p+1

r−1:n)

−θ [(n− r+1)− (p+1)(1−2α)]

(1−α)(p+1)
E(X p+1

r:n )

Remark 2.2: Recurrence relation for single moments of k− th upper record (at m =−1) will be

E(X (k)
u(r))

p+2 =
αθ 2

(1−α)
E(X (k)

u(r))
p +

θ k
(1−α)(p+1)

E(X (k)
u(r−1))

p+1

−θ [k− (p+1)(1−2α)]

(1−α)(p+1)
E(X (k)

u(r))
p+1

and at k = 1, we get the relation for the upper records, as obtained by Jose and Krishna (2011).

3. Product Moments

Case I: γi 6= γ j; i, j = 1,2, . . . ,n−1

The joint probability density function (pd f ) of X(r,n, m̃,k) and X(s,n, m̃,k), 1≤ r < s≤ n is given
as
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fX(r,n,m̃,k),X(s,n,m̃,k)(x,y) =Cs−1

( s

∑
i=r+1

a(r)i (s)
[ F̄(y)

F̄(x)

]γi
)

×
( r

∑
i=1

ai(r)[F̄(x)]γi
) f (x)

F̄(x)
f (y)
F̄(y)

, −∞≤ x < y≤ ∞, (3.1)

where

a(r)i (s) =
s

∏
j=r+1

j 6=i

1
γ j− γi

, r+1≤ i≤ s≤ n.

Theorem 3.1: For distribution as given in (1.2). Fix a positive integer k and for n ∈ N, m̃ ∈R, 1≤
r < s≤ n,

E
[
X p(r,n, m̃,k).Xq+2(s,n, m̃,k)

]
=

αθ 2

(1−α)
E
[
X p(r,n, m̃,k).Xq(s,n, m̃,k)

]

+
θγs

(1−α)(q+1)
E
[
X p(r,n, m̃,k).Xq+1(s−1,n, m̃,k)

]

−θ [γs− (q+1)(1−2α)

(1−α)(q+1)
E
[
X p(r,n, m̃,k).Xq+1(s,n, m̃,k)

]
(3.2)

Proof: We have by Athar and Islam (2004),

E
[
ξ{X(r,n, m̃,k),X(s,n, m̃,k)}

]
−E

[
ξ{X(r,n, m̃,k),X(s−1,n, m̃,k)}

]

=Cs−2

∫ ∫
−∞≤x<y≤∞

∂

∂y
ξ (x,y)

s

∑
i=r+1

a(r)i (s)
[ F̄(y)

F̄(x)

]γi

×
r

∑
i=1

ai(r)[F̄(x)]γi
f (x)
F̄(x)

dy dx. (3.3)

Now consider ξ (x,y) = ξ1(x).ξ2(y) = xp.yq+1 in (3.3), then in view of (1.4) we get

E
[
X p(r,n, m̃,k).Xq+1(s,n, m̃,k)

]
−E

[
X p(r,n, m̃,k).Xq+1(s−1,n, m̃,k)

]

=
(q+1)

θγs
Cs−1

∫
θ

0

∫
θ

x
(θ − y)[αθ +(1−α)y]xpyq

s

∑
i=r+1

a(r)i (s)
[ F̄(y)

F̄(x)

]γi

×
r

∑
i=1

ai(r)[F̄(x)]γi
f (x)
F̄(x)

f (y)
F̄(y)

dy dx,

which leads to (3.2).
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Case II: mi = m; i = 1,2, . . . ,n−1.

The joint pd f of X(r,n,m,k) and X(s,n,m,k), 1≤ r < s≤ n is given as

fX(r,n,m,k),X(s,n,m,k)(x,y) =
Cs−1

(r−1)!(s− r−1)!
[F̄(x)]m f (x) gr−1

m
(
F(x)

)
×[hm

(
F(y)

)
−hm

(
F(x)

)
]s−r−1[F̄(y)]γs−1 f (y), −∞≤ x < y≤ ∞. (3.4)

Theorem 3.2: For distribution as given in (1.2) and condition stated as in Theorem 3.1

E
[
X p(r,n,m,k).Xq+2(s,n,m,k)

]
=

αθ 2

(1−α)
E
[
X p(r,n,m,k).Xq(s,n,m,k)

]

+
θγs

(1−α)(q+1)
E
[
X p(r,n,m,k).Xq+1(s−1,n,m,k)

]

−θ [γs− (q+1)(1−2α)

(1−α)(q+1)
E
[
X p(r,n,m,k).Xq+1(s,n,m,k)

]
(3.5)

Proof: We have when γi 6= γ j but at mi = m, i = 1,2, . . . ,n−1

a(r)i (s) =
1

(m+1)s−r−1 (−1)s−i 1
(i− r−1)!(s− i)!

Hence, joint pd f of X(r,n, m̃,k) and X(s,n, m̃,k) given in (3.1) reduces to (3.4). [c f Khan et al.,
2006].

Therefore, Theorem 3.2 can be established by replacing m̃ with m in Theorem 3.1.

Remark 3.1: Recurrence relation for product moments of order statistics (at m = 0, k = 1) is

E
(
X p,q+2

r,s:n
)
=

αθ 2

(1−α)
E
(
X p,q

r,s:n
)
+

θ(n− s+1)
(1−α)(q+1)

E
(
X p,q+1

r,s−1:n

)
θ [(n− s+1)− (q+1)(1−2α)]

(1−α)(q+1)
E
(
X p,q+1

r,s:n
)

Remark 3.2: Recurrence relation for product moments of k− th record values will be

E
[
(X (k)

u(r))
p.(X (k)

u(s))
q+2]= αθ 2

(1−α)
E
[
(X (k)

u(r))
p.(X (k)

u(s))
q]

+
θk

(1−α)(q+1)
E
[
(X (k)

u(r))
p.(X (k)

u(s−1))
q+1]
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−θ [k− (p+1)(1−2α)]

(1−α)(q+1)
E
[
(X (k)

u(r))
p.(X (k)

u(s))
q+1]

Remark 3.3: At p = 0, we obtain recurrence relation for single moments as given in (2.2) and
(2.4).

4. Characterization

Theorem 4.1: Let X be an absolutely continuous random variable with cd f F(x) and pd f f (x).
Suppose 0 < F(x)< 1 for all x > 0, then

E
[
X p+1(r,n,m,k)

]
−E

[
X p+1(r−1,n,m,k)

]

=
(p+1)

θγr

[
αθ

2E
[
X p(r,n,m,k)

]
+θ(1−2α)E

[
X p+1(r,n,m,k)

]

−(1−α)E
[
X p+2(r,n,m,k)

]]
(4.1)

if and only if

F̄(x) =
α(θ − x)

[αθ +(1−α)x]
, 0 < x < θ , α > 0. (4.2)

where, F̄(x) = 1−F(x).

Proof: Necessary part follows from Theorem 2.2.

To proof (4.1) implies (4.2), we have

αθ
2 Cr−1

(r−1)!

∫
θ

0
xp[F̄(x)

]γr−1gr−1
m
(
F(x)

)
f (x)dx

+(1−2α)θ
Cr−1

(r−1)!

∫
θ

0
xp+1[F̄(x)

]γr−1gr−1
m
(
F(x)

)
f (x)dx

−(1−α)
Cr−1

(r−1)!

∫
θ

0
xp+2[F̄(x)

]γr−1gr−1
m
(
F(x)

)
f (x)dx

−θ
Cr−1

(r−1)!

∫
θ

0
xp[F̄(x)

]γr gr−1
m
(
F(x)

)
dx = 0
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which may be re-written as

Cr−1

(r−1)!

∫
θ

0
xp[F̄(x)

]γr−1gr−1
m
(
F(x)

)
f (x)

[
(θ − x)[αθ +(1−α)x]−θ

F̄(x)
f (x)

]
dx = 0.

Now applying a generalization of Müntz−Szász Theorem (Hwang and Lin, 1984), we get

f (x)
F̄(x)

=
θ

(θ − x)[αθ +(1−α)x]

and hence the (4.2).
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