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Abstract: Based on the analytical geometry method, small-plane bending deformation theory and 
approximate deflection curve equation, a simplified calculation method of section angular 
displacement will be proposed in this paper, which have been certified by the finite difference method. 
Then, the influence of number and space of measuring points on the experiment result had been 
detailed analyzed. Apparently, the method has good precision on premise of sufficient points, which 
could be an algorithms and experimental norm for beam angular displacement test on bridge loading 
test and damage identification. 

Introduction 

Generally, strain and displacement of the key cross-section are the dominating monitoring index in 
bridge structure analysis and experiment. Strain is more sensitive to the degree of damage of the 
current cross-section than the neighboring. Displacement is closely related to the stiffness of all 
structure sections within the whole affected line (plane) range. Damage of few sections have little 
difference to the displacement experiment results of key sections, which embarrassed bridge 
experiment, particularly , in old bridge. Strain calibration coefficient of some crack-sections is higher 
than norm while the displacement is lower. Therefore, making a reasonably assessment of damage of 
every experimental section and deducing the damage property of the concerned section, combined 
with mechanical analysis of the bridge structure, have become an issue to most bridge engineers[1] - [7]. 

Angular displacement calculation method based on analytic geometry  

 
Fig.1 Deflection measurement point 
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Analytic Geometry, generally, as one of the most simple and scientific methods to interpret 
natural phenomena is used widely. As show in fig.1, a simplified beam bridge model deflected under 
load(force/moment), target unit DEF on the initial position while the centroid node E. A, B, C on the 

corresponding deflection curve for the centroid O of ABC  with vertical displacement value fA, fB, fC 

respectively. Assuming that AI BJ CI tangent to deflection curve at A, B, C and DF // AG // NH // CK. 
Above all, we can derived that   
fA is length of DA, fB is length of EB, fC is length of FC. 

So    ∠GAB≈ BE AD
L
−

＝ B Af f
L
−                                                                    (1) 

∠HBC≈ CF EB
L
−

＝ C Bf f
L
−   

Where L is length of DE and EF. 

And so            Aθ ＝∠GAB+∠BAI＝ B Af f
L
− +

4
AOC∠                                                          (2) 

Bθ ＝∠HBJ＝∠HBC+∠CBJ＝∠HBC+
4

AOC∠
＝ C Bf f

L
− +

4
AOC∠          (3) 

Where Aθ , Bθ  is the angular displacement at node A and B of unit ABC. 

Q∠HBC＝∠MBN＝∠ABN-∠ABM  
And                 QAG//NH 

∴∠ABN=∠GAB= B Af f
L
−  

Q∠ABM=∠BAC+∠BCA 

And                    Q∠BAC＝∠BCA＝
4

AOC∠  

∴∠ABM＝ 2
4 2

AOC AOC∠ ∠
× =                                                               (4) 

 ∴∠HBC＝∠ABN-∠ABM＝ B Af f
L
− -

2
AOC∠                                          (5) 

From the Eq. (3) and (5), we have 

Bθ ＝∠HBC+∠CBJ＝∠HBC+
4

AOC∠
＝ B Af f

L
− - 

4
AOC∠                      (6) 

The average of the Eq. (3) and (6) can be obtained: 

Bθ ＝ 1
2
（ C Bf f

L
− +

4
AOC∠ + B Af f

L
− -

4
AOC∠

）＝
2

C Af f
L

−  

In the same way： Cθ ＝∠KCI＝∠BCI-∠BCK=
4

AOC∠ - C Bf f
L
−                                         (7) 

Where Cθ  is the angular displacement at node C of unit ABC. 

For the average deflect angle calculation, we can use Eq. Aθ  and Cθ  for both endpoints, and use 

Eq. Bθ  for the points among both endpoints. Because of the direction of the geometric method can not 

be considered generally, so it deserves much more attention in the calculation. 
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Angular displacement proved by finite difference method  

The beam in the case of symmetrical bending deformation rear beam axis with a smooth curve in 
the plane, which is the deflection curve [8] - [14]. Assuming that the beam deflection curve equation for 

deformation can be described as: ( )y f x= , apparently, the displacement value near by the measuring 

point x can be expressed as: ( )y f x x= + ∆ . The equation can be deployed with Taylor series as 

2 2 3 3

2 3( ) ( )
2! 3!

df x d f x d fy f x x f x x
x x x

∆ ∆
= + ∆ = + ∆ + + + ⋅⋅⋅                                               (8) 

( ) ( ) ( )df f x x f x x
x x

θ ο+ ∆ +
∴ = = + ∆

∆
，where ( )xο ∆  is a higher-order infinitesimal or 

truncation error for θ . When ( )xο ∆  is sufficiently small, the angular displacement of the section is: 

( ) ( )df f x x f x
x x

θ + ∆ −
= ≈

∆
                  First-order forward difference 

( ) ( )df f x f x x
x x

θ − − ∆
= ≈

∆
                  First-order backward difference 

( ) ( )
2

df f x x f x x
x x

θ + ∆ − − ∆
= ≈

∆
              First-order central difference                                   (9) 

If the distance of point can be seen as increasing step length of point position, the finite 
difference equation can be achieved by analytic geometry: 

Bθ ＝
2

C Af f
L

− = ( ) ( ) ( ) ( )
2 2

f x L f x L f x x f x x
L x

+ ∆ − − ∆ + ∆ − − ∆
=

∆ ∆
                                        (10) 

Curvature of the cross-section is 
2

2 2

1 ( ) 2 ( ) ( )d f f x x f x f x x
x xρ

+ ∆ − + − ∆
= ≈

∆
     Second-order difference                               (11) 

It can be obtained from equation (11) by using the finite difference method for solving unit 
center angle: 

2

2

( ) 2 ( ) ( )
o

x d f f x x f x f x xx
x x

θ
ρ
∆ + ∆ − + − ∆

= = × ∆ ≈
∆

， 

Where in the Equation: 

( )f x -The beam displacements were measured at the point x, unit: mm;  

( )f x x+ ∆ - The beam displacement at the point which is x∆ far before the point x, unit: mm; 

( )f x x− ∆ -The beam displacement at the point which is x∆ far after the point x, unit: mm; 

x∆ -The level distance bettween two adjacent measuring point, unit: mm; 

oθ - unit center angle, unit: rad. 

So  ∠AOC＝ 2 2( ( ) 2 ( ) ( ))L f x x f x f x x
xρ

+ ∆ − + − ∆
=

∆
                           (12) 
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Where ρ is the curvature radius of deflection curve of unit ABC. 

 So the angular displacement of unit ABC can be established by analytic geometry below 

= Aθ B Af f
L
− +

4
AOC∠  = 2

2
C B AB A f f ff f

L L
− +−

+  

= Cθ B Af f
L
− -

4
AOC∠  = 2

2
C B AB A f f ff f

L L
− +−

−                                                    (13) 

Example 

To verifying the influence and precision of the difference step-length on endpoint computation 
results, a pre-stressed concrete hollow-slab will exemplify the issue with concrete grade C50, elastic 
modulus Ec = 3.45×104MPa , which span L=16m. In this paper, structure displacement value on 
dead load as the comparative index allowed for the dead load account for more than 60% in small and 
medium-span bridge. The division of units is 4, 8 and 16 universally. Finally, exact, finite difference 
and analytic geometry solution of slab displacement will be deployed to analyze the error margin of 
precision for angular displacement in different divisions respectively. As showing in the figure 2, 3 
and table1: 

 
 

 
Fig.2 The division of displacement point  

 

Fig.3 Hollow slab section 

Conclusion 

1. A simplified calculation method of bridge structural angular displacement have been 

presented and verified by finite difference method. The error-margin do meet the requirement of the 

accuracy of beam bridge loading experimental results. 

2. The more measured point, the higher of the calculation accuracy of the beam angular 

displacement for each algorithm. As mentioned above, the maximum error margin is 19 ‰ when 

divided into 8 whereas 4 ‰ when 16 divisions. 

3. Generally, analytic geometry and finite difference method applied universally in bridge 

structural field, but the former shared in both endpoints with a higher precision. 
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Table1. Angular displacement calculation results and margin of error for different methods 

Number Calculation 
solution 

Support 
point L/16 L/8 3L/16 4L/16 4L/16 5L/16 7L/16 8L/16 9L/16 10L/16 11L/16 12L/16 13L/16 14L/16 15L/16 Support 

point 

4 equal 
portions 

Displacement[mm] 0.00    -7.99    -11.21    -7.99    0.00 
Exact Solution[rad 
/103] 

2.222    1.528    0    -1.528    -2.222 

Finite difference 
solution[rad/103] 

1.998    1.402    0.000    -1.402    -1.998 

Error[％] -10.1    -8.3    /    -8.3    -10.1 
Analytic geometry 
Solution[rad /103] 1.848  

   1.402    0.000    -1.402    
-1.848  

Error[％] -16.8     -8.3    /    -8.3    -16.8  

8 equal 
portions 

Displacement[mm] 0.00  -4.36  -7.99  -10.38  -11.21  -10.38  -7.99  -4.36  0.00 
Exact Solution[rad 
/103] 

2.222  2.031  1.528  0.816  0  -0.816  -1.528  -2.031  -2.222 

Finite difference 
solution[rad/103] 

2.180  1.998  1.506  0.805  0  -0.805  -1.506  -1.998  -2.180 

Error[‰] -19  -16  -15  -13  /  -13  -15  -16  -19 
Analytic geometry 
Solution[rad /103] 2.134   1.998   1.506   0.805   0.000   -0.805  

 
-1.506  

 
-1.998  

 
-2.134  

Error[‰] -39   -16  -15  -13  /  -13  -15  -16  -39  

16 equal 
portions 

Displacement[mm] 0 -2.23 -4.36 -6.30 -7.99 -9.37 -10.38 -11.00 -11.21 -11.00 -10.38 -9.37 -7.99 -6.30 -4.36 -2.23 0.00 
Exact Solution[rad 
/103] 

2.222 2.172 2.031 1.812 1.528 1.191 0.816 0.414 0 -0.414 -0.816 -1.191 -1.528 -1.812 -2.031 -2.172 -2.222 

Finite difference 
solution[rad/103] 

2.229 
2.180  2.038  1.817  1.532  1.195  0.818  0.416  0.000  -0.415  -0.818  -1.195  -1.532  -1.817  -2.038  -2.180  

-2.229 

Error[‰] 3 3 3 3 3 3 2 4 / 4 2 3 3 3 3 3 3 
Analytic geometry 
Solution[rad /103] 2.218  2.180  2.038  1.817  1.532  1.195  0.818  0.416  0.000  -0.415  -0.818  -1.195  -1.532  -1.817  -2.038  -2.180  -2.218  
Error[‰] -2  3 3 3 3 3 2 4 / 4 2 3 3 3 3 3 -2  
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