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Random excitation 
Abstract. Based on deterministic Precise Integration formulation, a stochastic Precise Integration 
algorithm is proposed and developed in this paper for the random analysis of nonlinear systems. The 
recurrence relations are derived to calculate the covariance matrix response of linear and nonlinear 
systems subjected to stationary and non-stationary random disturbance, respectively. Numerical 
simulations are carried out to demonstrate the accuracy and effectiveness of the method. 

Introduction 
Characterization of the response of stochastic systems has long interested researchers. The dynamic 
response of structure is assessed by displacement, velocity, and acceleration vectors. These quantities 
are answers of system differential equations, formulated by dynamic equilibrium in each degree of 
freedom. For linear systems subjected to additive Gaussian white or linearly filtered Gaussian white 
noise, the response is known to be Gaussian, and it can be calculated in many ways. But for most cases, 
the nonlinearity of system taken into account can not be neglected. The study of the dynamic behavior 
of nonlinear systems subjected to stochastic excitations is of great importance in reliability analysis in 
engineering practice.  

Recently, direct stochastic integration schemes have attracted more and more interest. H.J. 
Pradlwarter [1] introduced a algorithm for the computation of the covariance matrix of the stochastic 
response of linear and non-linear structures. A series of research work also has been done by To CWS 
on this filed. In his research, the stochastic central difference method [2] has been suggested, followed 
by the stochastic Houbolt method [3] and the stochastic Newmark algorithm [4]. Miao introduced 
direct integration variance prediction of random response for nonlinear systems [5]. These methods 
mentioned above and the work in [6] are based on second order representation of the equation of 
motion. 

In this paper, a stochastic Precise Integration Method (SPIM) is proposed and developed for 
calculating the random response of nonlinear systems subjected to non-stationary random excitation. 
The covariance matrix in state space can be obtained directly from the recursive expression. 

The stochastic precise integration method for MDOF linear system 
A quit general class of linear structural mechanics problems can be cast into the following equations 
of motion 

( )t+ + =M C Ku u u f&& &                                                            (1) 
where M, C and K are mass, damping and stiffness matrices; u&& , u& , uand ( )tf are acceleration , 
velocity, displacement and disturbance vectors, respectively. It can be assumed that the excitation is a 
vector of amplitude modulated Gaussian random process with zero ensemble average, ( )tf can be 
expressed as  

 ( ) ( ) ( )t t t=f α η                                                                            (2) 
in which ( )tα  is a vector of spatial distributive deterministic envelop function and ( )tη  is a 
continuous random process. This assumption is appropriate for the excitations such as earthquake and 
sea wave etc., which have the same excitation source.  
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Adopting the transformation proposed by Lin and Shen[8] , let  
/ 2= +M Cp u u&  or  1 1 / 2− −= −M M Cu p u&                                                (3) 

Equation (1) becomes  
1 1( / 4 / 2− −= − − − +K CM C CM&p )u p f                                                 (4) 

Equations (3) and (4) can be combined to give a formulation in state space 
= Hv v + r&                                                                                      (5) 
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Eq.(5) is called the state equation of structural dynamics response, and the solutions can be 
expressed as 

( )

0
( ) e e ( )

tt tt dτ τ τ−= + ∫H H
0v v r                                                             (7) 

The duration of structural dynamic response is divided into several time intervals with time step t∆ for 
numerical computation. The typical discrete time nt for numerical computation is given by nt n t= ∆ , 

0,1,2,n = L . The relationship between ( )ntv and 1( )nt +v can be expressed as follows: 
1
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Lets 
( ) tt e ∆∆ = HT ,                                                                          (9) 

Eq.(8) becomes 
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Eq. (10) is the recursive form of the state vector 1( )nt +v . For white noise excitation, by utilizing its 
properties, the recursive formulation of covariance matrix can be obtained directly from Eq. (10). 
However, steps have to be taken to simulate the continuous stochastic process using a discrete model 
for nonwhite noise. 

White noise excitations  
Multiplying Eq.(10) and its transpose and taking the ensemble average, the recurrence formula for the 
covariance matrix of the system can be derived as 

 T T T( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n t n t t n n t n+ = ∆ ∆ + ∆ + ∆ +T T T TQ Q B B R                    (11) 
in which 

     T( ) ( ) ( )n nn t t=Q v v                                                                                (12) 
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n nt t
n t d t dτ τ τ τ τ τ+ +
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where the superscript T denotes the transpose and the angular brackets <> denotes the ensemble 
average. 

For amplitude modulated white noise or Gaussian white noise, the excitation vector ( )tf  satisfies 
the following: 
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Then, ( )nR  can be expressed as follows: 
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There are two expressions to calculate the auto-correlation of discrete Gaussian noise <η2>. To 
[2]suggested the following expression  

2
02 Sπ=η                                                                  (19) 

While Zhang [9] pointed out that the results of the computation were seriously affected by the time 
step using the above formulation, and he suggested a modified expression as follows 

2
02 /S tπ= ∆η                                                              (20) 

where S0 is the spectral density of white noise. The latter expression is based on the matching of the 
input energy of both continuous white noise and discrete white noise. ( )nB can be determined 
completely from (10) without any presumptions. It will be derived in the following procedure.  

Multiplying Eq. (10) by 2
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Expressing ( )ntv on the right-hand side of Eq. (21) by using Eq. (10) continuously until the state 
vector becomes 0( )tv  and taking into account that T( ) ( )   (m n)n mt t = ≠0r r , Eq. (21) is changed to 
the following: 
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By applying initial conditions 0( )tv  which is constants, Eq. (22) becomes 
2
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Substituting Eq. (23) at nt  instead of 1nt + into Eq. (13), ( )nB can be derived as 
T T( ) ( ) ( ) ( )n nn t t t= ∆B r r T                                                     (24) 

Numerical examples : A Duffing oscillator 
The equation of motion for a Duffing oscillator is given as 
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Fig.1 and Fig. 2 show the variance response of a Duffing oscillator using the present PIM and 
Monte-Carlo simulation. In Fig. 1 ε is chose as 0.3 and in Fig. 2 ε is chose as 0.5. For such values of ε, 
the system demonstrates strong nonlinearity. It is shown that result obtained from SPIM is in good 
agreement with simulated data from Monte-Carlo simulation (MCS). Therefore, by employing 
piecewise linearization technique, the present method is accurate and efficient for systems with strong 
nonlinearity. 
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Fig. 1 Variance response of a Duffing oscillator for ε =0.3. Fig. 2  Variance response of a Duffing oscillator for ε = 0.5. 

Summary 
In the method developed in this research, the random excitation is assumed to be the same source 
excitation and thus can be simplified as a single variable stochastic process. As compared to 
conventional methods, the proposed method is quite easy to implement. The application of the SPIM 
to the above examples, compared with the results obtained by stochastic Newmak algorithm (SNA) 
and Monte Carlo Simulation (MCS) have evidenced the good accuracy level of the method proposed 
in this study. In addition, the stability conditions of the developed procedure are the same as that in 
deterministic. 
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