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Abstract. A boundary element method is extended to calculate the band structures of anisotropic 
phononic crystals with different components forming the square lattice. The system may be composed 
of anisotropic inclusions embedded in the isotropic matrix or isotropic inclusions embedded in the 
anisotropic matrix. In a periodic unit cell, boundary integral equations of the matrix and the inclusion 
are given. Substituting the periodic boundary conditions and the interface conditions, a set of linear 
equations is formed. Then the relations between the wave number and the frequency are determined, 
which clearly exhibit the band gaps of the phononic system. Some numerical examples are used to 
illustrate the accuracy and efficiency of the boundary element method. Additionally, the results show 
that for anisotropic phononic crystal, band gaps not only depend on the periodic lattice but also the 
angle between the symmetry axis of orthotropic materials (different rotating angles). 

Introduction 
Recently, many researchers have been extended to the study of acoustic and elastic waves in 

periodic composites called phononic crystals [1, 2]. The phononic crystal is an artificial crystal 
constructed by scatterers periodically embedded in a homogeneous host material, in which there is a 
contrast between the elastic constants and/or mass densities. The most interesting and important 
aspect of these features is that such artificial composites can exhibit elastic/acoustic wave band gaps, 
in which sound and vibration are all forbidden regardless of the polarization and propagating direction 
of the elastic/acoustic waves. The existence of absolute band gaps has been investigated both 
theoretically and experimentally [3, 4]. Such materials should have many potential applications such 
as elastic-acoustic filters, sound shields, transducers, etc. Furthermore, phononic crystals are also of 
practical importance in the design of vibrationless environments for high-precision mechanical 
systems [5]. 

    In the past decades, several methods have been developed to compute the band structures and 
transmission of elastic waves propagating in phononic crystals. For example, the plane-wave 
expansion (PWE) method [6] was widely applied to calculate the band structures of in-plane waves 
propagating in solid-solid phononic crystals. But it involves the slow convergence problem and is 
difficult to compute the mixed fluid-solid system. Moreover, it cannot treat different interface 
connection conditions. Though the finite difference time domain (FDTD) method [7] and the wavelet 
method [8] can compute the fluid-solid system and has fast convergence, they cannot deal with the 
different interface connection conditions. The finite difference time domain (FDTD) method [9] 
considers the different modes in solids and fluids but neglects the solid-fluid interaction at the 
interface. Recently, the boundary element method (BEM) [10] is developed to compute the band 
structures of the two-dimensional phononic crystals with isotropy. In the present paper; we will 
extend this method to the anisotropic phononic crystals.  

Theory 
We consider a 2D phononic crystal consisting of a square with the lattice constant a, see Fig. 1. 

Both scatterers and matrix are homogeneous, anisotropic and linear elastic solids. The governing 
equations describing these time-harmonic wave motions can be expressed as [11] 
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where ( )ju x is the component of the displacement； ρ is the mass density;  ω  is the angular 
frequency.  
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Fig. 1. The structures under consideration: (a), (b) and (c) are the square lattice, its corresponding square unit 
cell and the first Brillouin zone, respectively. 

 
Due to the periodicity of the system, we can restrict our attention to a unit cell (Fig. 1 (a2).The boundary or 

interface conditions for the problem are the continuities of the displacement field and the stress field 
on the interface 0Γ  between the matrix and the scatterers. Thus we have the following relations 
                                                   ( ) ( ) ( ) ( )1 0 1 0 0,       ,    = = ∈ Γu r u r T r T r r ,                                      (2) 

where ( )1T r  and ( )0T r  are the traction vectors. 
In addition, the periodicity of the structures implies that all field quantities (e.g. the 

displacements, stresses and their derivatives) should satisfy the Bloch theorem. Accordingly, the 
displacement vector u  can be written as 

                                            ( ) ( )mi
m e ⋅+ = k r

ku r r u r ,                                                           (3) 
where ( ),x yk k=k  is a real Bloch wave vector and ( )ku r  follows the same periodic condition as the 
structure; 1i = − ; and 1 1 2 2m m m= +r a a  with ( ) 2

1 2, Zm m ∈  and 1a  and 2a  being the fundamental 
translation vectors of the lattices. 

According to the reciprocal theorem, the boundary integral equation for the transverse wave can 
be expressed as [11] 
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               (4) 

where Γ is the boundary; 0.5c =  for a smooth boundary; and Qx  and Px  are the field and source points, 
respectively. In Eq. (4) the fundamental solution or Green’s function is given by the document[11]. 
The detailed process can be referenced in the literature [10]. 

Numerical results 
Based on the above described theory, some typical phononic crystal systems are calculated in 

this section for the transverse wave modes. The accuracy and the efficiency of the method are 
compared with other methods, and the effects of the anisotropy of the material on the band gaps are 
discussed. 
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Now, we consider the cylinders ybco with orthorhombic symmetry embedded in the epoxy 
matrix with isotropy forming a square lattice. The filling ratio is 0.75f = . The density and the elastic 
parameters of the component materials are: 3

0 1142kg/mρ = , 11 7.54Gpac = ,  12 4.57Gpac =  and 44 1.48Gpac =  
for epoxy; and 3

1 6333kg/mρ = , 1
11 268Gpac = , 1

12 132Gpac = , 1
13 95Gpac = , 1

22 231Gpac =  , 1
23 71Gpac = , 

1
33 186Gpac = , 1

44 37Gpac = , 1
55 49Gpac = and 1

66 95Gpac =  for ybco. We choose 8 constant elements on each 
edge of the external boundary and 32 constant elements on the boundary of the scatterer. The band 
structures for the square lattices are plotted in Fig. 2. It can be observed that in the calculation 
frequency interval, there is one complete band gap between the first and the second band, and between 
the fourth and the fifth band, respectively, namely [0.786, 1.254], and [2.596, 2.752]. These results 
are in agreement with the results computed by the plane wave expansion method [12, 13]. It verifies 
that the present method is accurate and effective. Additionally, in the present method, the forming 
matrix is smaller and the computing time is less.  

In the above system, the transverse wave mode is related to the elastic parameters 44c , 45c  and 

55c . And these elastic constants are dependent upon the rotating angles. Additionally, 44c  and 

55c have larger difference, so the rotating angles have larger influence on the bang gaps. Table 1 lists 
the range of the band gaps with the different rotating angles. We can find that the width of the first 
band gap become bigger, then decrease with the rotating angle increasing in the lower frequency, but 
the width of the second band gap becomes smaller, then increase with the rotating angle increasing in 
the higher frequency. Generally, the orthotropic scatterers have effect on the band gaps. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.2 Band structures for the ybco/epoxy system in a square with filling fraction 0.75f = and the rotation 

angle 00θ =  
 

Table 1 the band gaps for ybco/epoxy with the different rotation angles （ ,2 t epoxya cω π ） 
Rotating angle 00θ =  015θ =  030θ =  045θ =  060θ =  090θ =  
The first band gap [0.786,1.254] [0.660,1.260] [0.660,1.258] [0.660,1.255] [0.660,1.240] [0.660,1.200] 
The second band 
gap 

[1.680,2.136] [1.685,2.125] [1.685,2.115] [1.685,2.115] [1.685,2.130] [1.685,2.150] 

Conclusions 
   In this paper the boundary element method is extended to compute the band structures of 

anisotropic phononic crystals. The influence of rotating orthotropic scatterers on the wave band gaps 
is investigated numerically in the case of the square lattice. It is verified that the present method is 
accurate and effective for the anisotropic phononic crystals. In addition, the computed results show 
that the transverse wave mode is affected by rotating scatterers. Therefore, the location and width of 
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complete stop bands can be adjusted by changing the rotating angle of anisotropic scatterers. In 
summary, the wave band structure of 2D phononic crystal with anisotropic scatterers can be designed 
elaborately with consideration of the anisotropic feature of scatterers except the lattice, the material 
constant contrast, the filling fraction and the interface conditions. 
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