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Abstract. As an important tool to study practical problems of biology, engineering and image 
processing, the cellular neural networks (CNNs) has caused more and more attention. In this paper, 
by means of iterative analysis, the existence of periodic solution and the uniform stability of the 
equilibrium point of Hopfield cellular neural networks with impulsive effects are considered. Some 
new results are obtained. 

Introduction 

Cellular neural networks (CNNS) is formed by many units called cells, the structure of the CNN 
is similar to that found in cellular automata, namely, any cell in a cellular neural network is 
connected only to its neighbor cells. A cell contains linear and non-linear circuit elements, which 
typically are linear capacitors, linear resistors, linear and nonlinear controlled sources, and 
independent sources. The circuit diagram and connection pattern modelling a CNN can be found in 
[1,2]. Recently, due to the CNNs' applicability in image and signal processing, vision, pattern 
recognition and optimization, which have been paid much attention. Extraordinarily, the stability 
and equilibrium properties of cellular neural networks introduced in [3] have been investigated by 
many researches [4-6] where most of the results derive the conditions for uniqueness and global 
asymptotic stability of the equilibrium point for CNNs. 

In this paper, we are concerned with the existence of periodic solution and the uniform stability 
of the equilibrium point for Hopfield CNNs with impulsive effects. Different from most of the 
existing methods, we employ the iterative analysis method. Several previous results are improved 
and generalized. 

Preliminaries 

In this paper, we consider the following Hopfield CNNs with impulsive effects: 
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( ), lim ,k ik
k Z t tϕ+

→∞
∈ = ∞  is a real-valued continuous function defined on ( ]0 .-∞， The positive 

constants Ci and Ri are the neuron amplifier imput capacitance and resistance, respectively; Ji is the 
constant input from outside of the network, n denotes the number of units in a neural network, xi(t) 
denotes the state of the ith unit at time t and is a continuous T-periodic function, f j (xj (t)) denotes the 
output of the jth unit at time t, aij denotes the strength of the jth unit on the ith unit at time t, 

( )i kx t∆ corresponds to the abrupt changes of the state at fixed impulsive moment tk . 

Let [ ] { } ( ) {1 1 1 2 1 10, , , , , , , : ;k p iJ T J t t t t PC J R x J R= ∩ = = →L xi(t) is continuous everywhere except for 

some tk at which ( ) ( ) ( ) ( ) }, 1,2, , .     i k i k i k i kx t and x t exist and x t x t k p+ − −= = L .With norm ( ){ }1sup : ,i iPx x t t J= ∈  

then P is a Banach space. 

We call constant vector ( )* * * *
1 2, , ,

T

nx x x x= L as the equilibrium point of system (2.1), if it satisfies the 

following equation: 
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In this paper, we assume that some conditions are satisfied so that the equilibrium point of system (2.1) 
does exist. 

In order to prove the stability of the equilibrium point of system (2.1), we just need to prove 
the stability of zero solution of following system: 
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Definition  A piecewise continuous function ( ) [ ]0 : 0, nx t P T R∈ → is called a T-periodic solution of 

Eq.(2.1), if 

(1)  x(t) satisfies Eq.(2.1) for ( ], ;t T∈ −∞  

(2)  x(t) = x( t +T) for ;t R+∈  
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(3) x(t) is continuous at ( ) ( ) ( ) { }1, , .    k k k k k kt t x t x t and x t exist for t J t− +≠ = ∀ ∈ ∩  

The following are the basic hypotheses: 

(H1) There exist constants Li >0 such that ( ) ( )1 2 1 2 ;i i if x f x L x x− ≤ −  

(H2) There exist constants qik >0 such that ( ) ( )1 2 1 2 ;ik ik ikH x H x q x x− ≤ −  

We denote: 
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Lemma 2.1 Let ( ) ( ) ( ) ( )1 2, , ,
T

ny t y t y t y t=   L be a T-periodic solution of Eq.(2.2), then it can be 

presented as 
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Main results 

Theorem 3.1  Suppose that hypotheses (H1)-(H3) hold, then the problem (2.2) has a unique 

T-periodic solution ( ) ( ) ( ) ( )1 2, , ,
T

ny t y t y t y t=   L on[0,T], and                                      

2 , 1,2, , .
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 Proof.  We define the iteration 
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Therefore, the sequence ( ) ( ){ }m
iy t is uniformly convergent on [0, T], let ( ) ( ) ( )lim ,

→∞
=m

i im
y t y t  

obviously, yi(t) is a T-periodic solution to the initial value problem (2.2), which satisfies the 
inequality (3.1). This completes the proof of Theorem 3.1. 
Theorem 3.2 Suppose that the hypotheses (H1)-(H3) hold, then the zero solution of the initial value 
problem (2.2) is uniformly stable. 
Theorem 3.3 Suppose that the hypotheses (H1)-(H3) hold, then the equilibrium point of the initial 
value problem (2.1) is uniformly stable. 
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