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Abstract. Boosting is an effective classifier combination method, which can improve classification 
performance of an unstable learning algorithm due to its theoretical performance guarantees and 
strong experimental results. However, the algorithm has been used mainly in batch mode, i.e., it 
requires the entire training set to be available at once and, in some cases, require random access to the 
data. Recently, Nikunj C.oza(2001) proved that some preliminary theoretical results and some 
empirical comparisons of the classification accuracies of online algorithms with their corresponding 
batch algorithms on many datasets. In this paper, we present online versions of some boosting 
methods that require only one pass through the training data. Specifically, we discuss how our online 
algorithms mirror the techniques that boosting use to generate multiple distinct base models. We also 
present theoretical and experimental evidence that our online algorithms succeed in this mirroring. 
Our online algorithms are demonstrated to be more practical with larger datasets. We also compare 
the online and batch algorithms experimentally in terms of accuracy . 

Introduction 
    Traditional supervised learning algorithms generate a single model such as a Naïve Bayes classifier 
or TAN[1] classifier or BAN[2] classifier and use it to classify examples. Ensemble learning 
algorithms combine the predictions of multiple base models, each of which is learned using a 
traditional algorithm. Boosting [3] is a well-known ensemble learning algorithm that has been shown 
to improve generalization performance compared to the individual base models. Theoretical analysis 
of Boosting's performance supports these results [4-7]. 
     Nikunj C.oza(2001)[8] developed online versions of bagging and boosting. Online learning 
algorithms process each training example once “on arrival” without the need for storage and 
reprocessing, and maintain a current model that reflects all the training examples seen so far. Such 
algorithms run faster than typical batch algorithms in situations where data arrive continuously. They 
are also faster with large training sets for which the multiple passes through the training set required 
by most batch algorithms are prohibitively expensive.  
     In this paper, we also discussed some preliminary theoretical results and some empirical 
comparisons of the classification accuracies of our online algorithms with their corresponding batch 
algorithms on many datasets of varying size. We chose Naïve Bayes classifiers because a lossless 
online learning algorithm is available for them. For a given training set, a loss-less online learning 
algorithm returns a model identical to that returned by the corresponding batch algorithm. For BAN, 
we are forced to use a lossy online learning algorithm. In particular, we do not allow the BAN’s 
back-propagation algorithm to cycle through the entire training set in multiple epochs the way 
back-propagation is normally allowed to do. Overall, our online boosting algorithms perform 
comparably to their batch counterparts in terms of classification accuracy when using Naïve Bayes 
base models. The loss experienced by online BAN relative to batch BAN leads to a significant loss for 
online  boosting relative to the batch versions. Online boosting never performs significantly better 
than single online BAN in our tests.  

Oline Boosting Algorithm 
    Our online boosting algorithm is designed to be an online version of AdaBoost.M1[9]. AdaBoost 
generates a sequence of base Models h1,h2,……,hM using weighted training sets (weighted by 
D1,D2,……,DM) such that the training examples misclassified by model hm-1 are given half the 
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total weight when generating model hm and the correctly classified examples are given the remaining 
half of the weight. 
     Our online boosting algorithm is an online algorithm, its inputs are the current set of base models 
h={h1,h2,……,hM } and the associated parameters  λsc={ λ1sc,  λ2sc ,……λMsc}and λ
sw={ λ1sw,  λ2sw ,……λMsw}(these are the sums of the weights of the correctly classified and 
misclassified examples, respectively, for each of the M base models), as well as an online base model 
learning algorithm L0 and a new labeled training example (x,y). The algorithm’s output is a new 
classification function that is composed of updated base models h and associated parameters λsc and 
λsw . The algorithm starts by assigning the training example (x,y) the “weight” λ=1. Then the 
algorithm goes into a loop, in which one base model is updated in each iteration. For the first iteration, 
we choose k according to the Possion(λ) distribution, and call L0, the online base model learning 
algorithm, k times with base model h1 and example (x,y). We then see if the updated h1 has learned 
the example, i.e., whether h1 classifies it correctly. If it does, we update λ1sc, which is the sum of 
the weights of the examples that h1 classifies correctly. We then calculate ε1 which, just like in 
boosting, is the weighted fraction of the total examples that  h1 has misclassified. We then update λ 
by multiplying it by the same factor 1/(2(1-εm)) that we do in AdaBoost. On the other hand, if h1 
misclassifies example x, then we increment λ1sw, which is the sum of the weights of the examples 
that h1 misclassifies. Then we calculate ε1 and update λ by multiplying it by 1/(2εm), which is 
the same factor that is used by AdaBoost for misclassified examples. We then go into the second 
iteration of the loop to update the second base model h2 with example (x,y) and its new updated 
weight λ. We repeat this process for all M base models. The final ensemble returned has the same 
form as in AdaBoost, i.e., it is a function that takes a new example and returns the class that gets the 
maximum weighted vote over all the base models, where each base model’s vote is log((1-εm)/ε
m), which is proportional to the base model’s accuracy on the weighted training set presented to it. 
      Online Boosting Algorithm: 
      Initial conditions : For all m ∈ {1,2,……,M}, λmsc=0，λmsw=0. 
      Online Boosting(h, L0, (x, y)) 
       Set  the example’s “weighted” λ =1. 
        For each base model hm,  (m ∈ {1,2,……,M}) in h, 
                Set k according to Poisson(λ). 
                Do k times 
                       hm = L0(hm, (x, y)). 
                If y = hm (x) 
                then  
λmsc←λmsc+λ 
εm←λmsw/(λmsc+λmsw) 
λ ←λ(1/(2(1-εm))) 
                else 
λmsw←λmsw+λ 
εm←λmsw/(λmsc+λmsw) 
λ ←λ(1/(2εm) 
      To classify new examples: 
               Return h(x)=arg maxc Y∑m:hm(x)=clog((1-εm)/εm). 

Comparisons and results 
In this section, we discuss results on several datasets, whose names and numbers of training 

examples, test examples, classes, attributes and missing values are given in Table 1. The Census 
Income dataset comes with fixed training and test sets, which we use in our experiments. For the 
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remaining datasets, we used 5-fold cross-validation. We tested with some small datasets to show that 
the online algorithms can often achieve performance comparable to batch algorithms even when 
given a small number of data points. Of course, our results with larger datasets are more important. 
All but three of the datasets are from the UCI KDD repository [10]. The remaining three are synthetic 
datasets that were chosen because the performance of a single Naïve Bayes classifier varies 
significantly across these three datasets. These datasets allow us to compare the performances of the 
online and batch ensemble algorithms on datasets of varying difficulty. 

 
Table 1. Datasets used in the experiments 

No. Dataset Training Set Test Set Classes Attributes Missing 
values 

1 Promoters 84 22 2 57 × 

2 Breast-canc
er-w 559 140 2 10 √ 

3 German 800 200 2 20 × 

4 Car 
Evaluation 1382 346 4 6 × 

5 Mushroom 6499 1625 2 22 × 

6 Synthetic-1 80000 20000 2 20 × 

7 Synthetic-2 80000 20000 2 20 × 

8 Synthetic-3 80000 20000 2 20 × 

9 Census 
Income 199523 99762 2 40 √ 

10 Forest 
Covertype 464809 116203 7 54 √ 

 
     We present results using three different base model types: Naïve Bayes classifiers, BAN 
classifiers. Both boosting algorithms were allowed to generate up to 100 base models. All the results 
shown are based on10 runs of 5-fold cross validation (except on the Census Income dataset, where we 
used the supplied training and test sets). All the online algorithms were run five times for every one 
time the batch algorithm was run, with different random orders of the training set. This was done to 
account for the effect that the order of the training examples can have on the performance of an online 
learning algorithm. The online BAN was trained by using backpropagation to update the BAN with 
each training example ten times upon arrival; however, the algorithm only ran through the entire 
training set once in the order in which it was presented. The batch BAN was trained by using 
backpropagation to update the BAN in ten epochs (ten cycles through the entire training set). All 
comparisons between algorithms were made using a paired t-test (α=0.05).     
      Table 2 shows the results of running the boosting algorithms with Naïve Bayes classifiers. Entries 
in boldface/italics indicate that the ensemble algorithm performed significantly better/worse than a 
single Naïve Bayes classifier. In the “Online Boosting” column, any entry with a ‘+’ or ‘-‘ after it 
indicates that online boosting performed significantly better/worse than batch boosting, respectively. 
With Naïve Bayes classifiers (Table 2), online boosting performed significantly worse than batch 
boosting on the Promoters, German and Car Evaluation datasets. For the remaining datasets, batch 
and online boosting performed comparably. On Mushroom, Census Income and Forest Covertype 
datasets, they performed comparably; while on Breast-Cancer-w  they performed significantly better. 
     A scatter-plot comparing the test errors of batch and online boosting is shown in Figure 1—each 
point represents one dataset. Points above the diagonal line represent datasets for which the error of 
online boosting was higher than that of batch boosting and points below the line represent datasets for 
which online boosting had lower error. From Figure 1,we can see that batch boosting significantly 
outperforms online boosting in many cases—especially the smaller datasets. However, the 
performances of boosting and online boosting relative to a single Naive Bayes classifier agree to a 
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remarkable extent, i.e., when one of them is significantly better or worse than a single Naive Bayes 
classifier, the other one tends to be the same way. 
 

Table 2.  Experimental results with Boosting vs.online Boosting, Naïve Bayes 
  
      
 
 
 
 
 
 
 
 
 
 

 
 

Table 3 gives the results of running boosting with BANs. Entries in the online BAN and 
boosting column that are given in boldface/italics indicate that it significantly 
outperformed/underperformed relative to batch BANs. Entries in the online boosting column given in 
boldface/italics indicate times when it significantly outperformed/underperformed relative to the 
online BAN. With BAN classifiers (Table 3), online boosting performed significantly worse than 
batch boosting on most of the datasets. On Mushroom and Census Income datasets, they performed 
comparably. 

 
Table 3.  Experimental results with Boosting vs.online Boosting, BANs 

 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

No. Dataset Naïve Bayes Boosting Online Boosting 
1 Promoters 87.7 84.6 71.4- 
2 Breast-cancer-w 96.5 94.5 95.7+ 

3 German 74.8 73.5 68.8- 

4 Car Evaluation 85.7 90.2 89.7- 
5 Mushroom 99.7 100 99.9 
6 Synthetic-1 50 50.7 50.1- 
7 Synthetic-2 78 84.5 83.8- 
8 Synthetic-3 92.5 96.8 96.9 
9 Census Income 76.3 93.7 94 
10 Forest Covertype 67.6 67.5 67.5 

No. Dataset BAN Online BAN Boosting Online Boosting 
1 Promoters 89.8 80.4 86.4 62.5- 

2 Breast-cancer-
w 96.2 90.3 96.8 88.5- 

3 German 74.6 70.6 75.1 68.2- 

4 Car Evaluation 94.2 88.1 98.3 88.1- 

5 Mushroom 100 99.9 100 99.9 

6 Synthetic-1 72.2 65.4 72.3 63.4- 
7 Synthetic-2 85.6 83.4 85.6 81.1- 

8 Synthetic-3 98.3 98.1 98.2 95.8- 

9 Census 
Income 95.2 94.8 94.9 94.3 

10 Forest 
Covertype 75.7 69.7 77.8 65.3- 
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    Entries with a ‘-‘ after them indicate times when online boosting performed significantly worse 
than batch boosting. Clearly, the significant loss in using an online BAN instead of a batch BAN has 
rendered the online boosting algorithm significantly worse than batch boosting. 
     We can see from the tables and from the scatter-plots of batch and online boosting (Figure 2) that 
online boosting performs worse than batch boosting. Both batch boosting and online boosting do not 
improve upon BAN as much as they do upon Naive Bayes—especially on the larger datasets. 

Summary 
    In this paper, we discussed online versions of boosting and gave both theoretical and experimental 
evidence that they can perform comparably to their batch counterparts in terms of accuracy while 
running much faster. We proved the convergence of the ensemble generated by the online boosting 
algorithm to that of batch boosting for BAN classifiers. The difference between the accuracies of the 
batch and online ensemble algorithms is largely a function of the differences between the accuracies 
of the batch and online base model learning algorithms. When lossless online base model learning 
algorithms are available (such as for Naïve Bayes classifiers), the performances of the ensemble 
algorithms tend to be comparable. In this paper, we experimented only with batch datasets, i.e., one is 
not concerned with concept drift. Online algorithms are useful for batch datasets that cannot be 
loaded into memory in their entirety. This paper provides a stepping stone to using ensemble learning 
algorithms on large datasets. We hope we can come up with new ideas to make ensemble learning 
algorithms more practical for modern data mining problems in the future. 
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