

Empirical Comparisons of Online Boosting Algorithms
Sun Xiaowei1, a *

1Software College,Shenyang Normal University,Shenyang 110034,China,
ajunyaomail@163.com

Keywords: boosting, ensemble learning,online learning, accuracy, running time
Abstract. Boosting is an effective classifier combination method, which can improve classification
performance of an unstable learning algorithm due to its theoretical performance guarantees and
strong experimental results. However, the algorithm has been used mainly in batch mode, i.e., it
requires the entire training set to be available at once and, in some cases, require random access to the
data. Recently, Nikunj C.oza(2001) proved that some preliminary theoretical results and some
empirical comparisons of the classification accuracies of online algorithms with their corresponding
batch algorithms on many datasets. In this paper, we present online versions of some boosting
methods that require only one pass through the training data. Specifically, we discuss how our online
algorithms mirror the techniques that boosting use to generate multiple distinct base models. We also
present theoretical and experimental evidence that our online algorithms succeed in this mirroring.
Our online algorithms are demonstrated to be more practical with larger datasets. We also compare
the online and batch algorithms experimentally in terms of accuracy .

Introduction
 Traditional supervised learning algorithms generate a single model such as a Naïve Bayes classifier
or TAN[1] classifier or BAN[2] classifier and use it to classify examples. Ensemble learning
algorithms combine the predictions of multiple base models, each of which is learned using a
traditional algorithm. Boosting [3] is a well-known ensemble learning algorithm that has been shown
to improve generalization performance compared to the individual base models. Theoretical analysis
of Boosting's performance supports these results [4-7].
 Nikunj C.oza(2001)[8] developed online versions of bagging and boosting. Online learning
algorithms process each training example once “on arrival” without the need for storage and
reprocessing, and maintain a current model that reflects all the training examples seen so far. Such
algorithms run faster than typical batch algorithms in situations where data arrive continuously. They
are also faster with large training sets for which the multiple passes through the training set required
by most batch algorithms are prohibitively expensive.
 In this paper, we also discussed some preliminary theoretical results and some empirical
comparisons of the classification accuracies of our online algorithms with their corresponding batch
algorithms on many datasets of varying size. We chose Naïve Bayes classifiers because a lossless
online learning algorithm is available for them. For a given training set, a loss-less online learning
algorithm returns a model identical to that returned by the corresponding batch algorithm. For BAN,
we are forced to use a lossy online learning algorithm. In particular, we do not allow the BAN’s
back-propagation algorithm to cycle through the entire training set in multiple epochs the way
back-propagation is normally allowed to do. Overall, our online boosting algorithms perform
comparably to their batch counterparts in terms of classification accuracy when using Naïve Bayes
base models. The loss experienced by online BAN relative to batch BAN leads to a significant loss for
online boosting relative to the batch versions. Online boosting never performs significantly better
than single online BAN in our tests.

Oline Boosting Algorithm
 Our online boosting algorithm is designed to be an online version of AdaBoost.M1[9]. AdaBoost
generates a sequence of base Models h1,h2,……,hM using weighted training sets (weighted by
D1,D2,……,DM) such that the training examples misclassified by model hm-1 are given half the

3rd International Conference on Mechatronics, Robotics and Automation (ICMRA 2015)

© 2015. The authors - Published by Atlantis Press 375

total weight when generating model hm and the correctly classified examples are given the remaining
half of the weight.
 Our online boosting algorithm is an online algorithm, its inputs are the current set of base models
h={h1,h2,……,hM } and the associated parameters λsc={ λ1sc, λ2sc ,……λMsc}and λ
sw={ λ1sw, λ2sw ,……λMsw}(these are the sums of the weights of the correctly classified and
misclassified examples, respectively, for each of the M base models), as well as an online base model
learning algorithm L0 and a new labeled training example (x,y). The algorithm’s output is a new
classification function that is composed of updated base models h and associated parameters λsc and
λsw . The algorithm starts by assigning the training example (x,y) the “weight” λ=1. Then the
algorithm goes into a loop, in which one base model is updated in each iteration. For the first iteration,
we choose k according to the Possion(λ) distribution, and call L0, the online base model learning
algorithm, k times with base model h1 and example (x,y). We then see if the updated h1 has learned
the example, i.e., whether h1 classifies it correctly. If it does, we update λ1sc, which is the sum of
the weights of the examples that h1 classifies correctly. We then calculate ε1 which, just like in
boosting, is the weighted fraction of the total examples that h1 has misclassified. We then update λ
by multiplying it by the same factor 1/(2(1-εm)) that we do in AdaBoost. On the other hand, if h1
misclassifies example x, then we increment λ1sw, which is the sum of the weights of the examples
that h1 misclassifies. Then we calculate ε1 and update λ by multiplying it by 1/(2εm), which is
the same factor that is used by AdaBoost for misclassified examples. We then go into the second
iteration of the loop to update the second base model h2 with example (x,y) and its new updated
weight λ. We repeat this process for all M base models. The final ensemble returned has the same
form as in AdaBoost, i.e., it is a function that takes a new example and returns the class that gets the
maximum weighted vote over all the base models, where each base model’s vote is log((1-εm)/ε
m), which is proportional to the base model’s accuracy on the weighted training set presented to it.
 Online Boosting Algorithm:
 Initial conditions : For all m ∈ {1,2,……,M}, λmsc=0，λmsw=0.
 Online Boosting(h, L0, (x, y))
 Set the example’s “weighted” λ =1.
 For each base model hm, (m ∈ {1,2,……,M}) in h,
 Set k according to Poisson(λ).
 Do k times
 hm = L0(hm, (x, y)).
 If y = hm (x)
 then
λmsc←λmsc+λ
εm←λmsw/(λmsc+λmsw)
λ ←λ(1/(2(1-εm)))
 else
λmsw←λmsw+λ
εm←λmsw/(λmsc+λmsw)
λ ←λ(1/(2εm)
 To classify new examples:
 Return h(x)=arg maxc Y∑m:hm(x)=clog((1-εm)/εm).

Comparisons and results
In this section, we discuss results on several datasets, whose names and numbers of training

examples, test examples, classes, attributes and missing values are given in Table 1. The Census
Income dataset comes with fixed training and test sets, which we use in our experiments. For the

376

remaining datasets, we used 5-fold cross-validation. We tested with some small datasets to show that
the online algorithms can often achieve performance comparable to batch algorithms even when
given a small number of data points. Of course, our results with larger datasets are more important.
All but three of the datasets are from the UCI KDD repository [10]. The remaining three are synthetic
datasets that were chosen because the performance of a single Naïve Bayes classifier varies
significantly across these three datasets. These datasets allow us to compare the performances of the
online and batch ensemble algorithms on datasets of varying difficulty.

Table 1. Datasets used in the experiments

No. Dataset Training Set Test Set Classes Attributes Missing
values

1 Promoters 84 22 2 57 ×

2 Breast-canc
er-w 559 140 2 10 √

3 German 800 200 2 20 ×

4 Car
Evaluation 1382 346 4 6 ×

5 Mushroom 6499 1625 2 22 ×

6 Synthetic-1 80000 20000 2 20 ×

7 Synthetic-2 80000 20000 2 20 ×

8 Synthetic-3 80000 20000 2 20 ×

9 Census
Income 199523 99762 2 40 √

10 Forest
Covertype 464809 116203 7 54 √

 We present results using three different base model types: Naïve Bayes classifiers, BAN
classifiers. Both boosting algorithms were allowed to generate up to 100 base models. All the results
shown are based on10 runs of 5-fold cross validation (except on the Census Income dataset, where we
used the supplied training and test sets). All the online algorithms were run five times for every one
time the batch algorithm was run, with different random orders of the training set. This was done to
account for the effect that the order of the training examples can have on the performance of an online
learning algorithm. The online BAN was trained by using backpropagation to update the BAN with
each training example ten times upon arrival; however, the algorithm only ran through the entire
training set once in the order in which it was presented. The batch BAN was trained by using
backpropagation to update the BAN in ten epochs (ten cycles through the entire training set). All
comparisons between algorithms were made using a paired t-test (α=0.05).
 Table 2 shows the results of running the boosting algorithms with Naïve Bayes classifiers. Entries
in boldface/italics indicate that the ensemble algorithm performed significantly better/worse than a
single Naïve Bayes classifier. In the “Online Boosting” column, any entry with a ‘+’ or ‘-‘ after it
indicates that online boosting performed significantly better/worse than batch boosting, respectively.
With Naïve Bayes classifiers (Table 2), online boosting performed significantly worse than batch
boosting on the Promoters, German and Car Evaluation datasets. For the remaining datasets, batch
and online boosting performed comparably. On Mushroom, Census Income and Forest Covertype
datasets, they performed comparably; while on Breast-Cancer-w they performed significantly better.
 A scatter-plot comparing the test errors of batch and online boosting is shown in Figure 1—each
point represents one dataset. Points above the diagonal line represent datasets for which the error of
online boosting was higher than that of batch boosting and points below the line represent datasets for
which online boosting had lower error. From Figure 1,we can see that batch boosting significantly
outperforms online boosting in many cases—especially the smaller datasets. However, the
performances of boosting and online boosting relative to a single Naive Bayes classifier agree to a

377

remarkable extent, i.e., when one of them is significantly better or worse than a single Naive Bayes
classifier, the other one tends to be the same way.

Table 2. Experimental results with Boosting vs.online Boosting, Naïve Bayes

Table 3 gives the results of running boosting with BANs. Entries in the online BAN and
boosting column that are given in boldface/italics indicate that it significantly
outperformed/underperformed relative to batch BANs. Entries in the online boosting column given in
boldface/italics indicate times when it significantly outperformed/underperformed relative to the
online BAN. With BAN classifiers (Table 3), online boosting performed significantly worse than
batch boosting on most of the datasets. On Mushroom and Census Income datasets, they performed
comparably.

Table 3. Experimental results with Boosting vs.online Boosting, BANs

No. Dataset Naïve Bayes Boosting Online Boosting
1 Promoters 87.7 84.6 71.4-
2 Breast-cancer-w 96.5 94.5 95.7+

3 German 74.8 73.5 68.8-

4 Car Evaluation 85.7 90.2 89.7-
5 Mushroom 99.7 100 99.9
6 Synthetic-1 50 50.7 50.1-
7 Synthetic-2 78 84.5 83.8-
8 Synthetic-3 92.5 96.8 96.9
9 Census Income 76.3 93.7 94
10 Forest Covertype 67.6 67.5 67.5

No. Dataset BAN Online BAN Boosting Online Boosting
1 Promoters 89.8 80.4 86.4 62.5-

2 Breast-cancer-
w 96.2 90.3 96.8 88.5-

3 German 74.6 70.6 75.1 68.2-

4 Car Evaluation 94.2 88.1 98.3 88.1-

5 Mushroom 100 99.9 100 99.9

6 Synthetic-1 72.2 65.4 72.3 63.4-
7 Synthetic-2 85.6 83.4 85.6 81.1-

8 Synthetic-3 98.3 98.1 98.2 95.8-

9 Census
Income 95.2 94.8 94.9 94.3

10 Forest
Covertype 75.7 69.7 77.8 65.3-

378

 Entries with a ‘-‘ after them indicate times when online boosting performed significantly worse
than batch boosting. Clearly, the significant loss in using an online BAN instead of a batch BAN has
rendered the online boosting algorithm significantly worse than batch boosting.
 We can see from the tables and from the scatter-plots of batch and online boosting (Figure 2) that
online boosting performs worse than batch boosting. Both batch boosting and online boosting do not
improve upon BAN as much as they do upon Naive Bayes—especially on the larger datasets.

Summary
 In this paper, we discussed online versions of boosting and gave both theoretical and experimental
evidence that they can perform comparably to their batch counterparts in terms of accuracy while
running much faster. We proved the convergence of the ensemble generated by the online boosting
algorithm to that of batch boosting for BAN classifiers. The difference between the accuracies of the
batch and online ensemble algorithms is largely a function of the differences between the accuracies
of the batch and online base model learning algorithms. When lossless online base model learning
algorithms are available (such as for Naïve Bayes classifiers), the performances of the ensemble
algorithms tend to be comparable. In this paper, we experimented only with batch datasets, i.e., one is
not concerned with concept drift. Online algorithms are useful for batch datasets that cannot be
loaded into memory in their entirety. This paper provides a stepping stone to using ensemble learning
algorithms on large datasets. We hope we can come up with new ideas to make ensemble learning
algorithms more practical for modern data mining problems in the future.

References
[1] Cheng Jie, Greiner Russell, “Comparing Bayesian network classifiers”, In: Kathryn Blackmond

Laskey, Henri Prade eds. Proc of the 15th Conf on Uncertainty in Artificial Intelligence. San
Francisco: Morgan Kaufmann, pp.101-108, 1999.

[2] Friedman Nir, Geiger Dan, Goldszmidt Moises, “Bayesian network classifiers”, Machine
Learning, 29 (2/3), pp. 131-163, 1999.

[3] Bauer Eric, Kohavi Ron, “An empirical comparison of voting classification algorithms: Bagging,
boosting, and variants”, Machine Learning, 36 (1/2), pp. 105-139, 1999.

[4] Dietterich, Thomas, “Ensemble methods in machine learning”, In Kittler, J., Roli, F., eds.:
Multiple Classifier Systems. Lecture Notes Computer Sciences, Vol. 1857, pp. 1-15,2001.

[5] Freund Yoav, Robert Schapire, “A decision-theoretic generalization of on-line learning and an
application to boosting.Unpublished manuscript available electronically (on our web pages, or
by email request)”, An extended abstract appeared in Computational Learning Theory: Second
European Conf, EuroCOLT, pp.23-37,1995.

[6] Xiaowei Sun, Hongbo Zhou, “An Empirical Comparison of Two Boosting Algorithms on Real
Data Sets based on Analysis of Scientific Materials”, Springer, Advances in Intelligent and Soft
Computing, vol.105, pp.324-327, 2011.

Figure 1. Test Error Rates:Batch Boosting
vs. Online Boosting with Native Bayes base

models

Figure 2. Test Error Rates:Batch Boosting
vs. Online Boosting with BAN base models

379

[7] Hongbo Shi, Houkuan Huang, Zhihai Wang, “Boosting-Based TAN Combination Classifier”,
Journal of Computer research and development, 41(2), pp. 340-345,2004.

[8] Nikunj C. Oza, “Online Ensemble Learning,” Ph.D. thesis, Department of Electrical Engineering
and Computer Science, University of California, Berkeley, 2001.

[9] Yoav Freund and Robert Schapire, “A Decision-Theoretic Generalization of On-line Learning
and an Application to Boosting,” Journal of Computer System Sciences, Vol. 55, No. 1, pp.
119-139, 1997.

[10] Stephen D. Bay, “The UCI KDD Archive UCI Machine Learning Repository.”
http://archive.ics.uci.edu/ml/.

380

