
 

Eliminate the X-Optimization during RTL Verification 

Xu Huang1, a, He Xin2,b, LinTao Liu3,c and LunCai Liu4,d  
1Sichuan Institute of Solid State Circuits, Chongqing, P.R. China 
2Sichuan Institute of Solid State Circuits, Chongqing, P.R. China 
3Sichuan Institute of Solid State Circuits, Chongqing, P.R. China 
4Sichuan Institute of Solid State Circuits, Chongqing, P.R. China 

ahxtt103@163.com, bhexin@sisc.com, chgdllt@sisc.com, dllc@sisc.com 

Keywords: X-Optimization,Verification 
Abstract. Verification of complex SoC designs suffers from X-optimization issues that often conceal 
design bugs. The deployment of low power techniques such as power-shutdown in today’s SoC 
designs exacerbate these X-optimism issues. To address these problems we adopted a new simulation 
semantic that more accurately models non-deterministic values in logic simulation. In this paper we 
discuss how to eliminate the X-optimism during RTL verification. 

Introduction 
     Functional verification by simulating at the register transfer level (RTL) is a common technique 
used to ensure that a design meets its functional specification. However, traditional RTL simulation is 
unable to catch all design defects; instead, design teams typically resort to simulation of the gate-level 
representation to catch more bugs. Unfortunately, most designers run only a very small set of tests at 
the gate level because these simulations require compute servers with much higher memory 
requirements, and much longer runtimes.  

Engineers today tend to rely more on static timing analysis and equivalence checking, and less on 
gate-level simulation. Frequently, only a small subset of tests is run at the gate level, and occasionally, 
no gate-level simulation is done at all. Also, gate-level simulation can only be done late in the design 
phase due to lack of availability of the design netlist. If a bug is found at this late stage, it is more 
costly to implement the fix than it would be during RTL validation.  

There is a few of the reasons that gate-level simulation is used are: a) to check proper initialization 
sequences; b) to check scan operation; c) to check false and multi-cycle paths; d) to check X’s in RTL 
simulations. The last item is quite important but is commonly overlooked. RTL verification has been the 
workhorse of the industry for over twenty years, yet there is a fundamental flaw in this process. Engineers 
that verify their design using RTL simulation and ascertain that all tests are passing may be surprised to 
hear that the same design will fail during gate-level simulation or in real silicon due to some-thing called 
X-optimism.  

What is X-Optimism? 
     Optimism is defined as a tendency to expect a favorable or hopeful outcome. For this discussion, 
optimism is the condition where the simulation model yields fewer unknown values than are really 
possible. While optimism may generally be good, it is inadvisable in chip verification.  

Verilog HDL models four different logic values: 0, 1, X, and Z. The 0 and 1 represent the Boolean 
logic values False and True, respectively. The Z represents an undriven (tri-state) signal, and the X 
represents an unknown or indeterminate value. The value X is a very useful simulation abstraction 
that may be intentionally designated in the model, or it may be the unintentional result of a logic 
operation. For example. a designer may use an X to designate the value of a variable as immaterial (a 
don’t-care); conversely, an unintentional X value is the result of multiple drivers with different 
Boolean values driving the same net. A very common source of X values are uninitialized registers, 
that is, registers that are not initialized via a hardware reset. These registers could be part of a data 
path pipeline and hence not require a direct reset. Yet another (unintentional) source of X values are 
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error conditions such as timing violations (setup and hold) that could render a register meta-stable. 
The value X is a modeling abstraction because it does not exist as a distinct logic value in the actual 
hardware where even uninitialized registers will have either logic value 0 or 1. Next, we illustrate 
these concepts using use common RTL coding idioms.  

Simple if Statement 

 
Figure.1. Simple IF Statement--Multiplexer 

Figure 1 shows the Verilog code that models a simple multiplexer. Table 1 shows the truth table 
implemented by this Verilog model. The first three columns represent the inputs to the multiplexer. 
The fourth column shows the corresponding output value of the RTL simulation. The fifth column 
shows the actual hardware behavior. Inspecting the truth table, we see that when both data inputs are 
the same, the value of the select line is immaterial, and the output is equal to the data input value. 
When the data inputs are different, the output cannot be determined, hence, the fifth column shows a 
value of 0/1, which indicates that the real value depends on the actual value of cond. In contrast, the 
RTL simulation always assigns a definite logical value to the output.  

cond a b c (RTL) c (HW) 
X 0 0 0 0 
X 0 1 1 0/1 
X 1 0 0 0/1 
X 1 1 1 1 

                                                Table 1. True Table for the Simple Multiplexer 
The above behavior is mandated by the Verilog standard[1], which considers X-valued 

conditional expressions as false thereby require execution of the else clause of the if statement. Thus, 
when cond is X, the output c is always assigned the value of b. In other words, the if statement is 
evaluated “optimistically” by executing only the statements within the else clause when in reality it 
must consider executing both branches. This optimistic behavior is not confined to the if statement, 
but to all conditional controls, including the case statement.  

Simple Case Statement 

 
Figure.2. Simple Case Statement 

Figure 2 shows the Verilog code for a simple case statement. Table 2 shows the truth table 
implemented by this simple case statement. The first three columns represent the inputs to the case 
statement. The fourth column shows the corresponding output value of the RTL simulation. The fifth 
column shows the actual hardware behavior. Just like the previous example, when both data inputs are the 
same, the value of the select expression is immaterial: the output is equal to the value of the data input 
value. When the data inputs are different, the output cannot be determined, hence, the fifth column shows 
a value of 0/1 denoting the uncertainty. In contrast, the RTL simulation does not match any case item 
causing no statement to be executed. As a result, the output r retains its previous value, which incorrectly 
converts the combinational block into a memory element.  

s a b r (RTL) r (HW) 
X 0 0 r[t-1] 0 
X 0 1 r[t-1] 0/1 
X 1 0 r[t-1] 0/1 
X 1 1 r[t-1] 1 

                                                          Table 2. True Table for the Simple Case Statement                                                 
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Existing Approaches to the X-Optimism Problem 
The problems associated with X-optimism have been raised before[2], and even without a 

systemic solution, engineers have successfully taped-out and manufactured many designs. They have 
accomplished this through a combination of methodologies and workarounds that alleviate the 
problem. Below we describe some of the most common techniques in use today.  

Resetting All Registers 
       The X-optimism problem can be largely avoided by explicitly resetting all sequential elements in 
the design. After the device is reset, there are no uninitialized registers in the design. Eliminating the 
initial X’s thus bypasses the most common cause of X-optimism issues. Likewise, if the design 
includes blocks that can be shutdown then all registers in the shutdown blocks can be implemented as 
retention registers that can be powered up to a known state. The trade-off with this scheme is that it 
increases the area, delay, and power consumption of the design. Rather than solve the X-optimism 
problem, this scheme simply circumvents the problem, and is typically not appealing for leading edge 
designs. 
     Gate-Level Simulation 
     The only know approach that can catch all bugs due to X-optimism is to run a complete set of 
functional gate-level simulations. A design description at the gate-level no longer contains 
conditional control structures that can cause X optimism issues. This approach requires a fully 
synthesized netlist and is thus available only late in the design process. Gate-level simulations tend to 
be very pessimistic, which make RTL equivalence very difficult. In addition, debug at the gate-level 
can be very time-consuming because the gate netlist depends not only on design complexity but also 
on the transformations and optimizations performed during synthesis. Finally, the higher memory and 
runtime requirements of gate-level simulations severely limit their throughput, thus, allowing only a 
subset of the functional tests to be completed.  
     Random Register Initialization 
     Another common approach is to perform two-state simulations and randomly initialize to 1 or 0 all 
registers in the design[3]. Random initialization is appealing since it emulates the initial conditions of 
real hardware. However, this approach suffers from several drawbacks. Initialization to a random 
value is less general than an X, which captures all permutations of logic values. Hence, this approach 
requires more simulation runs to ensure sufficient coverage: a design with n registers requires 2n runs 
in order to exhaustively cover all initialization scenarios. The increasing memory size of today’s 
designs makes such an approach prohibitive. Often, random initialization is applied to only a small 
set of runs - typically one run.  

VCS X-Prop Solution 
Standard RTL semantics of conditional constructs in Verilog allow for indeterminate values in the 

control expressions to assign determinate values to the associated data path variables. This can have 
the consequence of failing to catch X-related bugs. A better simulation semantic model is to execute 
all alternatives whose execution is controlled by X values, and then merge the results in a predictable 
manner. This new simulation semantics eliminates X-optimism, models X values in a more realistic 
manner (closer to the actual hardware), reduces synthesis-simulation mismatches, and allows 
X-related bugs to be exposed by regular RTL simulation.  

New RTL Semantics 
     These new RTL semantics for indeterminate values approximate the don’t-care behavior used in 
logic synthesis. For every X-controlled statement, the simulator considers the effect of the control 
value being both 0 and 1. Conceptually, every variable assignment controlled by an X is substituted in 
all possible execution paths, and then all the substitutions are merged using a merge function. This 
process is illustrated using the Simple If Statement example shown in Figure 1. If cond has value X then 
values 0 and 1 both considered as shown in Table 3. When 0 is considered, the false statement of the if 
statement is executed, and C0 is assigned the value of b. When 1 is substituted, the true statement is 
executed and C1 is assigned the value of a. Conceptually, every executed branch creates a new temporary 
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variable. After all branches are considered the final value of c is computed by merging its constituent 
values.  

Value considered Effect Final Value 
cond == 1 C1  = a C = merge(C1,C0) cond == 0 C0 = b 

 Table 3. True Table for the Simple Case Statement    
    Merge Modes 
    The new semantics provides two merge modes. The first mode is called T-merge, and its truth table 
is shown in Table 4a. T-merge, which is derived from the ternary operator (hence the T), yields X 
when any of its inputs are different. The merge operates bitwise so that only bits whose values 
actually differ will propagate an X. The T-merge semantics eliminate X-optimism, and closely 
emulates the actual hardware behavior.  

 0 1 X Z 

 

 0 1 X Z 
0 0 X X X 0 X X X X 
1 X 1 X X 1 X X X X 
X X X X X X X X X X 
Z X X X X Z X X X X 

       Table 4a. T-Merge Truth Table                                                     Table 4b. X-Merge Truth Table 
    The second merge mode is called X-merge, and its truth table is shown in Table 4b. X-merge yields 
X regardless of the values of its inputs. The X-merge semantics also eliminate X-optimism, but its 
behavior is more pessimistic. This level of pessimism is conceptually equivalent to the projection of 
all X-pessimistic behaviors of any gate-level implementation of the RTL. It is useful to ensure that a 
gate-level implementation does not generate an X that has not been model by the RTL.  
    Comparison of Merge Modes and Gate-Level for the Simple If Statement 
    To illustrate the merge modes we consider the simple if statement shown in Figure 1. Figures 3a, 
3b, and 3c show three possible gate-level implementations of the simple if statement.  

 
Figure.3a,3b,3c. Different Implementations of the Simple If Statement 

cond a b c 
(HW) 

c 
(RTL) 

c 
T-Merge 

c 
X-Merge 

c 
(4a) 

c 
(4b) 

c 
(4c) 

X 0 0 0 0 0 X 0 X 0 
X 0 1 0/1 1 X X X X X 
X 1 0 0/1 0 X X X X X 
X 1 1 1 1 1 X X 1 1 

Table 5. True Table for the Simple If Statement with T-Merge and X-Merge 
Table 5 shows the truth table for the different models of the simple if statement. The first three 

columns represent the inputs to the multiplexer. The 4th column shows the corresponding value of the 
actual hardware, and the 5th column shows the output value of the standard RTL simulation. The 6th 
column shows the output value of the T-merge RTL simulation: it yields a determinate value when 
inputs a and b have the same value, and X when they differ. The 7th column shows the output value of 
the X-merge RTL simulation: it always yields an X value regardless of the values of a and b. It can be 
seen that the both the T-merge and X-merge modes remove the X-optimistic behavior exhibited by 
the standard RTL simulation. The 8th, 9th, and 10th columns show the output value corresponding to 
the gate-level simulations of each of the three implementations shown in Figure 3. It is interesting to 
note that the last row of the 8th column (4a) and the first row of the 9th column (4b) show an X, which 
is due to the reconvergent fan-out of the cond input. It is also noteworthy that the X-merge column is 
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the projection of the X behaviors of the three gate-level implementation, that is, it shows an X 
whenever any of the gate-level simulations will generate an X.  

Conclusions 
    This paper reviews the problems that arise from the X-optimistic semantics of the standard RTL 
simulation model. It uses simple examples to illustrate the nuances of X semantics, and describe how 
these semantics lead to incorrect behaviors that often conceal defects. These hidden bugs lead to 
passing RTL simulations that mislead design teams, thus, creating problems that are hard to correct 
later in the flow. 
    The paper also highlights the most common approaches currently used to address the problems 
created by X-optimism. These include gate-level simulations, pseudo-exhaustive 2-state random 
simulations, and other avoidance techniques. Each of these workarounds suffers from various 
shortcomings and inefficiencies, hence, none offers a complete solution. 
    This paper proposes a new method for RTL simulation that changes the X semantics in order to 
eliminate the incorrect results due to X-optimism. We introduce the merge mode: a novel mechanism 
that allows designers to control the level of X-optimism in RTL simulations. Two merge modes, 
T-merge and X-merge, are discussed and contrasted. Their behavior is analyzed using simple 
common idioms to demonstrate how they reveal bugs that are otherwise hidden. 

The new X semantics enable RTL simulation to provide hardware accuracy, but with the speed and 
capacity of traditional RTL simulation. The high performance and ease of use allowed the execution 
of a full test suite. The higher accuracy lead to increased coverage, greater confidence in the 
functional behavior, and overall improved designer productivity.  
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