
Software Defect Regions Identification Based on Behavior Mining
Xi Guo1, a, Pan Wang2, Yayun Wang3

1 Department of Computer Science, College of Informatics, Huazhong Agriculture University,
Wuhan, China

2 Wuhan Electric Power Technical College, Wuhan, China
3 College of Public Administration, Huazhong Agriculture University, Wuhan, China

aseyeyesx@163.com

Keywords: Software Testing; Software Defect; Software Analysis; Behavior Mining
Abstract. Random testing is a widely used testing technique, and adaptive random testing has
enhanced the performance of random testing recently. The research results demonstrate that the
improvement depends on the characters of the software defect region. A method that depicts the
distribution of software defect region in the input region based on testing is proposed in this paper,
and the method that describes the characteristics of the software defect region. The experimental
results show that testing constraint reveals the mechanism of software defect trigging and
propagation.

Introduction
Reliability is very important to the software system, thus researchers use various testing methods

to find the defects in the software, that is observing whether the functions of the software is defect
according to a certain input values[1]. However, the current software usually has an enormous scale
and complexity, it is impossible to test all the effect inputs. Random testing a widely used black-box
testing method, but is has a relatively low efficiency. In order to improve the defects of random
testing, Chen proposed the adaptive random testing method[2], which improves the selection
approach of test suites according to a better uniform distribution of test suites in the input regions.
Theory search also demonstrates that adaptive random testing is an economic technique to save the
testing costs[3].

Input constrain is a set of constrains to which the input variables must apply, and it is connect to
the input regions[4]. Input constrain also can help the researches to analyze to distribution
characteristics of the software defect region relate to the defects.

Input Constraint
During the software development stage, the design defects will evolve to the coding defects, that

is to say, when the defect code is executed, the software will defect[5]. In order to find the
underlying defects, we must select the test suites belong to the software defect region.

Definition 1. Input Defect Region(IFR). Let P is the program, and its input region is I, the defect
d is imported to P, and another program is obtained, and the input defect region IFR is defined
as follows:

Definition 2. Input Constraint(IC). Let P is the program, and its input region is I, the defect d is

imported to P, and another program is obtained, and the Input Constraint relate to d is defined
as follows:

The original program P is a triple , where I is a set of input, Stmt is a set of

statements, and St is a set of states. I can be shown as , and a state of P can be
illustrated as , where . A statement of P, that is
where , is a state transition: , where .

3rd International Conference on Mechatronics, Robotics and Automation (ICMRA 2015)

© 2015. The authors - Published by Atlantis Press 497

Definition 3. Defect Constraint(FC). The transformed program P’ is a transition of original
program P. The transform method tm is used in the statement st, that is: , where

, and , is the set of P and tm. Defect constraint relates to
constraint C is defined as follows:

Let is the final state of program P, and the defect program is P’, the statement st has the

feature: , where , and , is the statement set of P and P’.
The defect propagation is defined as follows:

The computation rules is: as for the original program P, and its input regain is I, the defect program
P’ is related to the defect d, and the Input Constraint(IC) is the intersection of the Defect Constraint
FC(d) and Defect Propagation FP(d).

Defect Region Characteristic
The characteristic of software defect is the key factor that affects the adaptive random testing. The
Input Constraint (IC) of defect d is a set of constraint conditions over input variable[7]. The common
operator are disjunction, conjunction and nor, thus an Input Constraint (IC) can be transformed into
its equal disjunction normal form IC’.

The defect ration r can be defined as , where is the number of test cases in
the defect region, and is the number of test cases in the input region I. A software has a higher
defect ration, which means the IC(d) has a larger number of test cases.

Software usually has multiple input variables, thus the software defect ration can be computed
as follows. Let the Input Constraint (IC) has a defect d, and .

, where is the region of , where = when i is a
real number, and = when i is a integer.

The software defect region FR is computed as follows:

Let P the program, and Input Constraint(IC) of defect d is related to the software defect region fr,

and the test inputs are distributed in the input region of P. When a program has two input variables,
the defect region has a certain shape, such as point or stripe[8].

Let P the program, and its input variable is i, the Input Constraint(IC) of defect d is IC(d), and
IC(d)= . As for the given , is the region of . We also can reinforce the
checking condition of constraint, that is the input constraint of defect d is IC(d), and IC(d) is a
normal form, ICi is an element of IC(d), the software defect region fr is a constrain if and on if all the
ICi has a continuous constrain region.

Behavior Distance
Training set is the point set in the multiple space, and F is the set of

characteristic properties. The properties are either discrete or continuous[9]. The classification
property is l, which is a discrete variable with range of L. The target of classification is minimize the
misclassification error , that is for each :

Where is the error value of , and q is the future position. is the probability of q for .
Behavior distance supposes all the misclassification has the same error limit, that is:

However, the behavior distance approach can not anticipate the classification property value of q

precisely, but give the most probable anticipate value:
behavior distance =

498

The method of behavior distance computation is different from the other classification methods,
especially in the definition of prior probability.
Where is the behavior distance of q in the training data set according to the distance function
d(x,q), and C is a core function, which is defined as followed:

The prior probability can be defined as followed:

The main steps of behavior distance are usually as follows: firstly, a proper distance mechanism

should be selected, and for each data point dp in test suite, the number of nearest points to dp is k,
and anticipate the classification property of target point according to the nearest points. When the
anticipation is finished, and then computes the classification error.

In practical, the value of property is probably from certain ontology. As for discrete property f, if
two properties has different values, equals to 1. But it cannot reveal the real fact, especially when
two properties have a close connection in the behavior.

Ontology O is a five tuples, O := (V, T, F, H, R), where V is a set of vocabulary, T is a set of
transaction, and F is a reference function: , which maps a vocabulary to a
transaction. Many vocabularies can be mapped to a transaction, and one vocabulary can be mapped
to many transactions. H is a hierarchy: , H(t1, t2) means that t1 is a sub transaction of t2. R
is the root of transaction. For each , H(t, R) is satisfied.

Let p(t) be the occur possibility of transaction t in the whole transaction set. Let number(t) be the
number of occurrence of transaction t in the date set D, and number(D) is the number of date set D.
Transaction usually has several sub-transactions, so during the computation of transaction, the
number of sub-transactions must be added.

It is easy to find that p(t) is monotonically increase, and p(R) = 1. Let parent(t) be the ancestor set

of t, that is:

Because there is no circle in H, it is obvious that:

Where is the number of elements in set X. The equation means that if t has a ancestor, its
ancestor is unique. The information content of transaction t is:

Where k is a constant. Let t1 and t2 are two values of property f. As , H(t, R) is satisfied, thus
t1 and t2 have the same ancestor. Let M(t1, t2) be the most minimal ancestor, that is:

If t1 and t2 satisfy H(t1, t2), the link between t1 and t2 is , which can be defined as follows:

Because and H has no circle, there is only one path between t1 and t2 in ontology

O, which is recorded as path(t1, t2), the union set of the link from t1 to M(t1, t2) and the link from t2 to
M(t1, t2) is its path, and the definition is:

The definition of behavior distance include two aspects of meaning, the first is the construction of

ontology determines the position of M(t1, t2), the second is that the value of p(M(t1, t2), p(t1), p(t1)) is
from the statistics of the date set. One property in different ontology has different behavior distance,
while as for the same ontology; the behavior distance of different data set is also different. Our
method integrates the behavior relation and statistic, which can help the researchers simulate the
transaction precisely.

499

Experimental Results
The experimental target is a program that contains 10 modules and 151 lines of executable codes.

This program is widely used in the software testing, and researchers can interpolate various defects,
that is change several lines of codes.

Because the disjunction normal form of Input Constraint(IC) of is , which has 5 elements,
thus the software defect region is multiple. The Boolean element based on ,

, and their defect region is . Table 1 is the results of software
defect region of defect , and the ratio can be computed via: .

TABLE I. SOFTWARE DEFECT REGION ANALYSIS

Defect Ratio Software Defect Ration
Defect Ratio Percentage

 9.1%
 12.0%
 7.3%
 6.2%
 8.5%

Acknowledgement
This project is supported by the Fundamental Research Funds for the Central Universities under

grant No. 2662015QC009 and the Hubei Province Natural Science Foundation under Grant No.
2014CFB144.

References
[1] Hamlet R. Random testing. In: Marciniak J, ed. Proc. of the Encyclopedia of Software

Engineering. 2nd ed., New York: John Wiley and Sons, 2002.
[2] Chen TY, Kuo F C, Merkel R, Tse TH. Adaptive random testing: The ART of test case diversity.

Journal of Systems and Software, 2010,83(1):60−66.
[3] Chen TY, Leung H, Mak IK. Adaptive random testing. In: Maher MJ, ed. Proc. of the 9th Asian

Computing Science Conf. LNCS,3321, Heidelburg: Springer-Verlag, 2004. 320−329.
[4] Sun CA. A constraint-based approach to identifying and analyzing defect-causing regions.

Journal of Software, 2012,23(7):1688− 1701
[5] Chen TY, Kuo FC, Merkel RG, Ng SP. Mirror adaptive random testing. Information and

Software Technology, 2004,46(15):1001−1010.
[6] Mayer J. Lattice-Based adaptive random testing. In: Ireland A, ed. Proc. of the 20th IEEE/ACM

Int’l Conf. on Automated Software. Engineering (ASE 2005). New York: ACM Press, 2005.333
−336.

[7] Andrews JH, Briand LC, Labiche Y. Is mutation an appropriate tool for testing experiments? In:
Roman GC, Griswold WG, Nuseibeh B. eds. Proc. of the 27th Int’l Conf. on Software
Engineering (ICSE2005). Los Alamitos: IEEE Computer Society Press, 2005. 402−411

[8] YangL ， ZuoC ， WangYG ． K-Nearest neighbor satisification based on behavior
distance．JournalofSoftware，2005，16(12)：2054-2062

[9] Barzin R, Fukushima S, Howden W, Sharifi S. Superfit combinational elusive bug detection. In:
Leppänen W, ed. Proc. of the 32nd Annual IEEE Int’l Computer Software and Applications Conf.
(COMPSAC 2008). Washington: IEEE Computer Society, 2008.144−151.

500

