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Abstract.In this paper,we investigate the generalized Hyers-Ulam-Rassias stability of Jensen 

functional equation in Felbin’s type fuzzy normed linear spaces . 

 

1.Introduction 

  In 1940, Ulam[1] proposed the general Ulam stability problem.Next year, Hyers[2] solved this 

problem.In 1978, Rassias[3] took account of the unbounded Cauchy difference in Hyers’ theorem 

and obtained the results for linear mappings. The stability problems of several functional equations 

have been extensively investigated by a number of authors (see [4,5] and references therein).In 

1989,Kominek[6] proved the stability of Jensen functional equation on a restricted domain.In1998, 

Jung[7] proved the Hyers-Ulam-Rassias stability of Jensen functional equation. In 2014, Eskandani 

and Rassias[8] investigated the stability of a general cubic functional equation in Felbin’s type 

fuzzy normed linear spaces. In this paper,we investigate the generalized Hyers-Ulam-Rassias 

stability of Jensen functional equation in Felbin’s type fuzzy normed linear spaces . 

We consider some basic concepts concerning in the theory of fuzzy real numbers. Let  be a 

fuzzy subset on R, i.e., a mapping  associating with each real number t its grade of 

membership . 

  Definition1.1
]9[
A fuzzy subset  on R is called a fuzzy real number,whose -level set is 

denoted by ,i.e., ,if it satisfies two axioms: 

(1)There exists  such that . 

(2)For each ;  where . 

  The set of all fuzzy real numbers denoted by .If  and  whenever 

,then  is called a nonnegative fuzzy real number and  denotes the set of all 

non-negative fuzzy real numbers. 

Definition1.2
]9[
 Let X be a real linear space, L and R (respectively, left norm and right norm) be 
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symmetric and non-decreasing mappings in both arguments from  into  

satisfying  and .The mapping  from X into  is called a fuzzy 

norm if for  and : 

(1)  if and only if , 

(2)  for all  and  

(3)For all , 

(a)if ,  and  then   tsyx    ),,( tysxL  

(b)if ,  and  then  tsyx      ),( tysxR . 

The quaternary (X, ,L,R) is called a fuzzy normed linear space. 

  Definition1.3
]9[
 Let (X, ,L,R) be a fuzzy normed linear space and .A 

sequence  in X is said to converge to ,denoted by ,if 

 for every  and is called a Cauchy sequence if 

 for every .A subset  in X is said to be complete if every 

Cauchy sequence in A converges in A.The fuzzy normed space (X, ,L,R) is said to be a fuzzy 

Banach space if it is complete. 

  Theorem1.4
]10[
 Let (X,‖.‖,L,R) be a fuzzy normed linear space, if ,then for 

any ,  for all  

A mapping  is called a Jensen function if f satisfies the functional equation  

 

for .For a given mapping we define the difference operator 

 

for Then f is a Jensen function if  for all  
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2. Stability of Jensen functional equation using direct method. 

  Theorem2.1 Let X be a real liner space and (Y, ,L,R) be a fuzzy Banach space satisfying 

.Let  be a mapping for which there exists a function 

 such that    

                                (2.1) 

                          (2.2)      

                                   (2.3)            

for all , .Then there exists a Jensen function  such that 

                                 (2.4) 

for all , . 

  Proof. Define  by  for all . Letting  in (2.3), we get 

 

                                (2.5) 

for all ,  Replacing y by  in (2.5) and dividing both sides by , we get 

               (2.6) 

By theorem1.4 and inequality (2.6), we get 

          (2.7) 

for all ,  and all non-negative integers m and n with . Passing the limit 

 in (2.7),we have 
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Therefore the sequence  is a Cauchy sequence in Y for all Since Y is complete, 

the sequence  converges for all So we can define the mapping  by 

 

If we define a function  by and let  and  in (2.7) , 

then We get (2.4). Now, we 

show that J is a Jensen function. 

 

 

So J is a Jensen function. 
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