On the stability of Jensen functional equation in Felbin's type fuzzy normed linear spaces

Wenping Xue^{1,a}, Peisheng Ji^{2,b}

^{1,2} College of Mathematics, Qing Dao University, Qing Dao 266071, P.R. China

^a 1107597917@qq.com, ^b jipeish@yahoo.com

Keywords: stability; Felbin's type fuzzy normed linear spaces; Jensen functional equation.

Abstract.In this paper,we investigate the generalized Hyers-Ulam-Rassias stability of Jensen functional equation in Felbin's type fuzzy normed linear spaces .

1.Introduction

In 1940, Ulam[1] proposed the general Ulam stability problem. Next year, Hyers[2] solved this problem. In 1978, Rassias[3] took account of the unbounded Cauchy difference in Hyers' theorem and obtained the results for linear mappings. The stability problems of several functional equations have been extensively investigated by a number of authors (see [4,5] and references therein). In 1989, Kominek[6] proved the stability of Jensen functional equation on a restricted domain. In 1998, Jung[7] proved the Hyers-Ulam-Rassias stability of Jensen functional equation. In 2014, Eskandani and Rassias[8] investigated the stability of a general cubic functional equation in Felbin's type fuzzy normed linear spaces. In this paper, we investigate the generalized Hyers-Ulam-Rassias stability of Jensen functional equation in Felbin's type fuzzy normed linear spaces.

We consider some basic concepts concerning in the theory of fuzzy real numbers. Let β be a fuzzy subset on R, i.e., a mapping $\beta: R \to [0,1]$ associating with each real number t its grade of membership $\beta(t)$.

Definition 1.1 [9] A fuzzy subset β on R is called a fuzzy real number, whose α -level set is denoted by $[\beta]_{\alpha}$, i.e., $[\beta]_{\alpha} = \{t: \beta(t) \geq \alpha\}$, if it satisfies two axioms:

(1) There exists $t_0 \in R$ such that $\beta(t_0) = 1$.

 $\text{(2)For each } \alpha \in (0,1]; \left[\beta\right]_{\alpha} = \left[\beta_{\alpha}^{-}, \beta_{\alpha}^{+}\right] \text{ where} - \infty < \beta_{\alpha}^{-} \leq \beta_{\alpha}^{+} < + \infty.$

The set of all fuzzy real numbers denoted by F(R). If $\beta \in F(R)$ and $\beta(t) = 0$ whenever t < 0, then β is called a nonnegative fuzzy real number and $F^*(R)$ denotes the set of all non-negative fuzzy real numbers.

Definition1.2^[9] Let X be a real linear space, L and R (respectively, left norm and right norm) be

symmetric and non-decreasing mappings in both arguments from $[0,1] \times [0,1]$ into [0,1] satisfying L(0,0) = 0 and R(1,1) = 1. The mapping $\|.\|$ from X into $F^*(R)$ is called a fuzzy norm if for $x \in X$ and $\alpha \in (0,1]$:

- $(1)\|\mathbf{x}\| = \overline{\mathbf{0}}$ if and only if $\mathbf{x} = \mathbf{0}$,
- $(2)\|\mathbf{r}\mathbf{x}\| = \|\mathbf{r}\|\|\mathbf{x}\|$ for all $\mathbf{x} \in \mathbf{X}$ and $\mathbf{r} \in (-\infty, +\infty)$;
- (3) For all $x, y \in X$,

(a) if
$$s \le \|x\|_1^-$$
, $t \le \|y\|_1^-$ and $s + t \le \|x + y\|_1^-$ then $\|x + y\|(s + t) \ge L(\|x\|(s), \|y\|(t))$,

(b) if
$$s \le ||x||_1^-$$
, $t \le ||y||_1^-$ and $s + t \ge ||x + y||_1^-$ then $||x + y||(s + t) \le R(||x||(s), ||y||(t))$.

The quaternary $(X, \|.\|, L, R)$ is called a fuzzy normed linear space.

Definition 1.3^[9] Let $(X, \|.\|, L, R)$ be a fuzzy normed linear space and $\lim_{a\to 0^+} R(a, a) = 0$. A sequence $\{x_n\}$ in X is said to converge to $x \in X$, denoted by $\lim_{n\to\infty} x_n = x$, if $\lim_{n\to\infty} \|x_n - x\|_{\alpha}^+ = 0$ for every $\alpha \in (0,1]$ and is called a Cauchy sequence if $\lim_{n,m\to\infty} \|x_n - x_m\|_{\alpha}^+ = 0$ for every $\alpha \in (0,1]$. A subset A in X is said to be complete if every Cauchy sequence in A converges in A. The fuzzy normed space $(X, \|.\|, L, R)$ is said to be a fuzzy Banach space if it is complete.

Theorem1.4^[10] Let $(X, \|.\|, L, R)$ be a fuzzy normed linear space, if $R(a, b) \le \max(a, b)$, then for any $\alpha \in (0, 1], \|x + y\|_{\alpha}^+ \le \|x\|_{\alpha}^+ + \|y\|_{\alpha}^+$ for all $x, y \in X$.

A mapping $f: X \to Y$ is called a Jensen function if f satisfies the functional equation

$$2f\left(\frac{x+y}{2}\right) = f(x) + f(y)$$

for $x, y \in X$. For a given mapping $f: X \to Y$, we define the difference operator

$$Df(x,y) = f(x) + f(y) - 2f\left(\frac{x+y}{2}\right)$$

for $x, y \in X$. Then f is a Jensen function if Df(x,y) = 0 for all $x, y \in X$.

2. Stability of Jensen functional equation using direct method.

Theorem2.1 Let X be a real liner space and $(Y, \|.\|, L, R)$ be a fuzzy Banach space satisfying $R(a,b) \le \max(a,b)$. Let $f: X \to Y$ be a mapping for which there exists a function $\phi: X \times X \to F^*(R)$ such that

$$\lim_{n \to \infty} \frac{1}{2^n} \phi(2^n x, 2^n y)_{\alpha}^+ = 0, \tag{2.1}$$

$$\widetilde{\phi}_{\alpha}(x) = \sum_{i=0}^{\infty} \frac{1}{2^{i+1}} \phi(0, 2^{i+1}x)_{\alpha}^{+} < \infty, \tag{2.2}$$

$$\|Df(x,y)\|_{\alpha}^{+} \le \varphi(x,y)_{\alpha}^{+}$$
 (2.3)

for all $x, y \in X$, $\alpha \in (0,1]$. Then there exists a Jensen function $J:X \to Y$ such that

$$\|f(x) - J(x)\|_{\alpha}^{+} \le \widetilde{\varphi}_{\alpha}(x) \tag{2.4}$$

for all $x \in X$, $\alpha \in (0,1]$.

Proof. Define $g: X \to Y$ by g(x) = f(x) - f(0) for all $x \in X$. Letting x = 0 in (2.3), we get

$$\left\| f(0) + f(y) - 2f(\frac{y}{2}) \right\|_{\alpha}^{+} = \left\| f(y) - f(0) - 2(f(\frac{y}{2}) - f(0)) \right\|_{\alpha}^{+}$$

$$= \left\| g(y) - 2g(\frac{y}{2}) \right\|_{\alpha}^{+} \le \phi(0, y)_{\alpha}^{+}$$
 (2.5)

for all $y \in X$, $\alpha \in (0,1]$. Replacing y by $2^{n+1}x$ in (2.5) and dividing both sides by 2^{n+1} , we get

$$\left\| \frac{1}{2^{n+1}} g(2^{n+1}x) - \frac{1}{2^n} g(2^n x) \right\|_{\alpha}^+ \le \frac{1}{2^{n+1}} \phi(0, 2^{n+1}x)_{\alpha}^+. \tag{2.6}$$

By theorem1.4 and inequality (2.6), we get

$$\left\| \frac{1}{2^{n+1}} g(2^{n+1}x) - \frac{1}{2^m} g(2^m x) \right\|_{\alpha}^+ \le \sum_{i=m}^n \frac{1}{2^{i+1}} \phi(0, 2^{i+1}x)_{\alpha}^+$$
 (2.7)

for all $x \in X$, $\alpha \in (0,1]$ and all non-negative integers m and n with $n \ge m$. Passing the limit $m, n \to \infty$ in (2.7), we have

$$\lim_{m,n\to\infty} \left\| \frac{1}{2^{n+1}} g(\ 2^{n+1} x) - \frac{1}{2^m} g(2^m x) \right\|_\alpha^+ = 0.$$

Therefore the sequence $\left\{\frac{1}{2^n}g(2^nx)\right\}$ is a Cauchy sequence in Y for all $x \in X$. Since Y is complete,

the sequence $\left\{\frac{1}{2^n}g(2^nx)\right\}$ converges for all $x \in X$. So we can define the mapping $A: X \to Y$ by

$$A(x) = \lim_{n \to \infty} \frac{1}{2^n} g(2^n x).$$

If we define a function $J: X \to Y$ by J(x) = A(x) + f(0), and let m = 0 and $n \to \infty$ in (2.7), then $\|J(x) - f(x)\|_{\alpha}^+ = \|A(x) - f(x) + f(0)\|_{\alpha}^+ = \|A(x) - g(x)\|_{\alpha}^+ \le \widetilde{\phi}_{\alpha}(x)$. We get (2.4). Now, we show that J is a Jensen function.

$$\|DJ(x,y)\|_{\alpha}^{+} = \|D(A(x,y) + f(0))\|_{\alpha}^{+} = \left\|\lim_{n \to \infty} \frac{1}{2^{n}} Df(2^{n}x, 2^{n}y)\right\|_{\alpha}^{+}$$

$$\leq lim_{n\to\infty} \tfrac{1}{2^n} \phi(2^n x, 2^n y)_\alpha^+ = 0.$$

So J is a Jensen function.

References

[1]S.M.Ulam, A collection of mathematical problems[J], Interscience, New York, (1960).

[2]D.H.Hyers,On the stability of the linear functional equation[J], Proc. Nat. Acad. Sci. U.S.A.27, 222–224(1941). MR 2,315a. Zbl 061.26403.

[3]Th.M.Rassias,On the stability of the linear mapping in Banach spaces[J],Proc.Am. Math.Soc.72,297-300(1978).

[4]Soon-Mo Jung, Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis[M],Spring Optimization and Its Applications 48.

[5]C.Hark,J.R.Lee,Approximation of an AQCQ-functional equation and its applications[J], Austro J.Math,Anal.Appl.,8(1):1-34,2011.(Art.14).

[6]Z.Kominek,On a local stability of the Jensen function equation[J],Demonstratio Math.22,499-507(1989).

[7]S.M.Jung,Hyers-Ulam-Rassias stability of Jensen's equation and its application[J],Proc.Amer.Math.Soc.126,3137-3143(1998).

[8]G.Z.Eskandani, J.M.Rassias, Approximately of a general cubic function equation in Felbin's fuzzy normed linear spaces [J], Results. Math. 66, 113-123 (2014).

[9]C.Felbin,Finite dimensional fuzzy normed linear spaces[J],Fuzzy Set and Systems 48, 239-248(1992).

[10]J.Xiao,X.Zhu,Topological degree theory and fixed point theorems in fuzzy normed space[J].Fuzzy Sets Syst,147,437-452(2004).