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Abstract: In this paper, an improved and regularized algorithm is proposed to solve the sparse 
recovery problem in “fully-perturbed” model, which means perturbations present both in 
measurements and dictionary matrix. The paper shows how the regularized algorithm is derived based 
on TLS (total least-squares) and FOCUSS (FOCal Underdetermined System Solver) methods. In the 
end, simulations illustrate the advantages of the new algorithm. 

Introduction 
The problem of finding sparse solutions to underdetermined system of linear equations has been a hot 
spot of researches in recent years, because of its widespread application in compressive 
sensing/sampling (CS), biomagnetic imagining, source localization, signal reconstruction, etc. In the 
noise-free setup, CS theory holds promise to explain the equivalence between 0l -norm minimization 
and 1l -norm minimization as solving exactly linear equations when the unknown vector is sparse[1]. 
Variants of CS for "noise setup" of perturbed measurements are usually solved based on convex 
optimization[2], greedy algorithms[3] or FOCUSS[4].  

Recently, only a few attentions had been paid on the sparse problems in fully-perturbed linear model. 
To solve this problem, performance analysis of CS for the linear regression model under sparsity 
constraints was researched in ref. [5], S-TLS was devised to reconstruct sparse vectors based on 
convex optimization[6], SD-FOCUSS evaluated sparse solutions and perturbation matrix 
synchronously through an iterative and convergent process[7], and TLS-FOCUSS reduced the impact 
of perturbations both in measurements and dictionary matrix based on TLS and FOCUSS methods to 
find the sparse solutions[8]. However, the research of ref. [5] is limited in theoretical aspect and does 
not devise systematic approaches; S-TLS is unsuitable for large scale problems because of 
highly-computational burden; due to needing to estimate perturbations, which is impossible actually, 
SD-FOCUSS is just a suboptimal algorithm. Different of above algorithms, TLS-FOCUSS is 
low-computational, efficient and optimal. However, it is short of practicability with assuming that 
perturbations containing two different categories are i.i.d. (independently and identically distributed).  

The objective of this paper is to extend the TLS-FOCUSS algorithm so that it can be used in the 
fully-perturbed linear model where measurement-noise and matrix perturbations belong to different 
types. It is shown how an adjustment to the parameters of system model leads to a regularized version 
of TLS-FOCUSS algorithm, RT-FOCUSS algorithm. 

Perturbed Linear Regression Model 
For the underdetermined linear model =y Ax , where the unknown 1n×  vector x  is to be recovered 
from the given 1m×  measurements vector y  and the m n×  matrix E , CS theory asserts that it has 
the unique solutions with x  being sparse and A  satisfying some property[1]. Then consider the 
perturbed linear regression model with perturbations in measurements and dictionary[6-8], which can 
be formulated as 

 ( ) ,= + +y A E x e  (1) 
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where m∈e R  represents the measurement-noise vector, m n×∈E R  represents the perturbations matrix, 
and usually m n= . Due to randomness and uncertainty, it is a reasonable assumption that the 
components of noise or perturbations in the same channel are independently and identically Gaussian 
distributed, i.e. 2

1~ (0, )N σe I  and 2
2vec( ) ~ (0, )N σE I , where vec ( )⋅  is matrix vectorizing operator. 

With assuming that  ~ ( , )σ 2v N 0 I , i.e. 1 2σ σ= , the solutions of TLS-FOCUSS algorithm has been 

reconstructed as 2 2

2 2/arg min ( , ) p

ppγ σ+
z

Bz z z  ,where [ , ]= − ΑB y , 
1 

=  
 

z
x

, 0 1p< ≤ , and 

( , )pγ σ  is sparsity-tuning parameter depending on σ  and p [8]. However, how does TLS-FOCUSS 
algorithm work effectively if 1 2σ σ≠ ? 

Regularized TLS-FOCUSS (RT-FOCUSS) Algorithm 
In the maximum a posteriori (MAP) sense, the estimate of x  can be obtained as 

 $
MAP arg max ln ( | ) arg max[ln ( | ) ln ( )].p p p= = +

x x
x x y y x x  (2) 

And the elements of sparse x  can be assumed to be distributed as general Gaussian and independent, 
which is 
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where C  represents constant, 0 1p< ≤  and 2 (1/ )2
(3 / )

p p
p
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− Γ
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 ( ( )Γ ⋅  means Gamma function)[4]. 

Formula (1) can be rewritten as ( )− =y Ax G x v ，  where 1 2( ) [ , ]T
m mσ σ ×= ⊗G x x I , 

1 2vec([ / , / ])σ σ=v e E , and ⊗  represents Kronecker product.. With ~ (0,1)v N  and 

( )22 2
1 2 2

( ) ( )H σ σ= +G x G x x I , it can be obtained that  
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From (2), (3) and (4) one can proceed to find the MAP estimate as 
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Let [ ]1 2/ , /σ σ= − ΑB y , 1

2

σ
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x
, and formula (5) can be rewritten as 

 2 2

2 2
ˆ arg min / p

MAP pγ= +
z

z Bz z z , (6) 

where 
2

1
p pγ

β σ
= . Then formula (6) is identified as the form of TLS-FOCUSS algorithm. Through 

simplification, the objective function of (6) is equivalent to  
 2 2

2 2
min , s.t. 1.p

p
γ + = z

Bz z z  (7) 

Using Lagrange multiplier method, the objective function can be rewritten as  
 2

2( ) (1 ),p H
pJ γ λ= + + −z Bz z z z  (8) 

where λ  is the Lagrange multiplier. The optimal solution *z must satisfy *( ) 0T∇ =z z , so one can get 
1

** *
1 1( ) ,( )H α

λ
− −+ Π =B B z z z  where / 2pα γ= , ( )2
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i n
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L
. This suggests the   
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Fig. 1  success probability of algorithms in finding the nonzero indices 

 
following iterative relaxation algorithm: 

 ( )1
1 .k k kλ−Φ =z z z  (9) 

where ( )1
1

1

1)( ( )k
H

kα− −
− −

=Φ + Πz B B z . Thus 1/ λ  should be the maximal eigenvalue of 1( )k −Φ z  to 
guarantee λ  being the minimal value, and the corresponding eigenvector is chosen as the k -th 
estimate of z . To reduce the dimensions of computation, matrix inversion formula can be used to get 

( )Φ z  in each iteration procedure, which is  

 11 ( ( ) )H HIα
α

−Φ = Π − Π − Π ΠB B B B . (10) 

When the convergent solution *z  is obtained, one can get 1 *2 * 1
*
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Simulation Results 
In this section, computer simulations are conducted to evaluate the performance of RT-FOCUSS 
algorithm and other similar algorithms used for fully-perturbed model. The m n×  matrix A  is created 
with entries being each Gaussian random variables with mean 0 and variance 1. To evaluate the 
methods, the true sparse solution has to be known, which is often hard to know actually. Then a known 
sparse vector x  is created with only s  rows being nonzero entries. The indices of the s  nonzero rows 
are chosen randomly from a discrete uniform distribution, and the amplitudes of these indices are 
chosen randomly from a standard normal distribution. Under this situation, the signal-to-noise ratio 
(SNR) is defined as 2

110logSNR σ= − , and dictionary-to-perturbation ratio (DPR) is defined as 
2
210 logDPR σ= − . The parameters of simulation are set as follows: 0.5p = , 20m = , 128n = , 3s = . 

In each Monte Carlo experiment, 500 trials are carried independently. In the following simulations, 
besides RT-FOCUSS algorithm, other similar algorithms are involved: S-TLS[6], SD-FOCUSS[7], 
TLS-FOCUSS[8]. The range of SNR is set from 15dB to 20dB, and DPR is fixed to 15dB. In a single 
simulation, the algorithm is considered to be successful if all nonzero indices of x  are found exactly; 
otherwise, it is considered to be failed.  

Fig. 1 shows the statistical results of success percentage. It can be seen that RT-FOCUSS algorithm 
presents more robust performance than other algorithms because of its higher success probability. Fig. 
2 shows the statistical RMSE (root-mean-square error) curves of signal-amplitude recovery when 
algorithms find nonzero indices of x  correctly. One can find that the recovery result of RT-FOCUSS 
algorithm is much closer to the real inputs than the results of other algorithms.  

575



 

15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

SNR/dB

R
M

S
E

 o
f r

ec
ov

er
ed

 a
m

pl
itu

de

 

 
TLS-FOCUSS
SD-FOCUSS
S-TLS
RT-FOCUSS

 
Fig. 2  RMSE of signal amplitude recovery 

Conclusions 
In this paper, the problem of sparse recovery in fully-perturbed environments has been tackled. Against 
different types of perturbations exiting in the measurements and dictionary, a new algorithm, 
RT-FOCUSS, has been proposed to solve this problem. We described how to derive RT-FOCUSS 
algorithm and the principle to restrain the different perturbations. Simulations proved that 
RT-FOCUSS algorithm can better identify the generating sparse data than previous algorithms. The 
benefits of RT-FOCUSS algorithm make it a good choice of sparse recovery for practical applications. 
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