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Abstract: Geared rotary actuators in the leading edge flaps of an aircraft are usually composed of 
compound planetary gear sets with high reduction ratio. A new method using hypergraph in the power 
flow analysis of compound planetary gear sets in geared rotary actuator is proposed. The equation 
establishment method of kinematics and torques based on hypergraphs is investigated and the 
circulating power calculation approach is studied as well. A GRA on the aircraft was taken as an 
example to highlight the method.  

Introduction 
The leading edge flaps of an aircraft are hinged on the wings and can be extended with Fowler 

motion [1] to increase the lift coefficient of the aircraft during takeoff, to reduce landing distance 
during touching down and to control flight during cruise. Geared rotary actuators are usually 
composed of compound planetary gear sets (CPGS) with high reduction ratio. Due to the high gear 
ratio from the differential of compound planetary gear sets, the average efficiency is lower than that of 
a simple planetary gear set [2]. But the compound planetary gear sets can provide a better torque to 
weight ratio, which is very important for the limited space available in an aircraft. Power flow analysis 
is a primary procedure for efficiency calculation, especially for circulating power analysis in CPGS.  

Different graphic methods were employed in the power flow analysis of planetary gear sets in the 
literatures [3-5]. Esmail et al [3] established a block based on a basic gear pair and a two-DOF hybrid 
vehicle transmission system was analyzed by this method. Apparently this method has to deal with all 
the gear pairs and give the relations between each element in the power flow analysis. In the analysis of 
a power-split planetary gear train Chen [4] applied a virtual power flow graph method and it has to 
deduce equations of virtual power for different gear trains. Goma Ayats et al [5] applied hypergraphs 
to analyze the velocity relations of one degree of freedom gear trains and this method was showed 
more clear and easy understanding than other methods. But it’s limited to one degree of freedom 
systems and just used to analyze the kinematic equations. 

In this paper, our study will focus on power flow analysis of GRAs with CPGSs. An approach based 
on hypergraphs for power flow analysis and circulating power will be proposed.  

Hypergraphs of planetary gear sets 
The gear trains shown in Fig.1(a) is a GRA applied in a commercial aircraft, which is composed of 

several CPGSs, S1, S2,…, Sn, , where Si is the name of ith CPGS. These CPGSs have the same structure 
and S1 is shown in Fig.1(b) to manifest the structure. These CPGSs are actuated by input shaft Sin and 
then actuate the flaps by output rings Sout. Since the CPGSs are the same in a GRA, we need only 
analyze the power flow of CPGS in Fig.1(b). The CPGS in Fig.1(b) can be considered to be composed 
of three simple planetary gear sets (SPGTs) a, b and c.  

The fundamentals of hypergraphs used for the analysis are explained as follows. A simple planetary 
gear set (SPGS) as shown in Fig.2(a) typically includes three shafts (one carrier, two central gears) and 
three planets. A basic triangle hypergraph (BTH) is used to represent the SPGS as shown in Fig.2(b). 
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In the BTH, the round node represents a shaft in the mechanism, and the line represents the mechanical 
connection between two shafts. The rules for the symbolization of a BTH and its nodes are given as 
follows: a BTH is represented by a letter, such as x in Fig.2(b). The numerals 1 (sun gear) and 3 (ring 
gear) following a BTH’s symbol represent the gear shafts, thus the combination x1 represents gear 1 in 
the SPGS x; whereas numeral 2 following a BTH’s symbol represents the carrier in a BTH, such as x2 
represents carrier 2 in the SPGS x. The direction of gearing is represented by an arrow and the gear 
ratio is put on the arrow. The letter k with a BTH’s name as a subscript is the ratio between gearing 
shaft 1 and 3 when carrier shaft 2 is fixed, that is kx=sign(ρx), where x is the BTH’s name, ρ is the 
characteristic ratio of the SPGS, ρx=Zx3/Zx1, sign() indicates the sigh function of k, which is determined 
by the meshing types between planets and central gears.  
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Fig.1 (a) Geared rotary actuators; (b) A compound planetary gear set S1 of GRA (a) 

x1

x3

x2

x1 x3

x2p

kx

x

 
(a)                                              (b) 

Fig.2 (a) A planetary gear set; (b) Hypergraph of SPGS 
 

In order to analyze velocity, torque and power flow of the systems in Fig.1, hypergraph of Fig.1(b) 
is obtained based on the definitions above as shown in Fig.3. In Fig.3, the arrow pointing to a node 
represents system input, the arrow pointing out of a node represents system output and they are 
denoted by in and out, respectively. In a CPGS, it is typical that shafts in different SPGSs are connected 
together. Although the connected shaft has the same velocity in all relative SPGSs, the torque in each 
SPGS is different. Therefore the connected shafts are denoted by multiple overlapped circles which are 
defined as a group node to represent connected shafts in different BTHs, such as group nodes a2b2c2 
in Fig.3. The node connected with ground is represented using a filled circle, such as b3 in Fig.3. 
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Fig.3 Hypergraph of Fig.1(b) 

 
The velocity of each node in hypergraphs is denoted by ω with its subscript, for instance, ωa1 denotes 

the velocity of node a1. The torque for a node in each SPGS is denoted by T with its subscript, for 
instance, Tb2 denotes the torque in node b2. The power of a node is denoted by P with its subscript, for 
instance, Pb1 denotes the power of node b1. 
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Power flow analysis of planetary gear trains 

Velocity analysis. Considering kinematics of a BTH in Fig.2(b), its velocity equation can be written as 
following according to Willis equation [6], that is 

1 3 2(1 )x x x x xk kω ω ω= + −                                                                                               (1) 
Because hypergraph of a CPGS is composed of several BTHs, their velocity can be calculated 

according to Eq. 1 and the following procedures are generally conducted: 
(1) Obtain all the velocity equations for each BTH and their boundary conditions, where boundary 

conditions are relationships between shafts or connections between shafts and inputs/ground; 
(2) Carry out matrix operations to get the velocity of each shaft and the gear ratio of any two shafts, 

which is explained as follows. 
Now, the velocity equations of Fig.3 can be yielded by the foregoing rules as, 
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where ω0 is the velocity of input shaft and Eq. 2 can be rewritten in matrix form, 
=Kω V                                                                                                              (3) 

where K is the coefficient matrix of characteristic ratios of SPGSs, ω is the velocity vector and V is the 
constant vector.  

So the velocity of each shaft can be obtained using matrix operations, that is 
1−=ω K V                                                                                                           (4) 

Toque analysis. Ignoring the power loss in the gear train and considering force balance and power 
balance, the summation of torques and power on three shafts of any SPGS shown in Fig.2(b) are 
always zero. They are shown by the equations below, respectively, 
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                                                                                  (5) 

Similar to the velocity analysis, two procedures are generally to be performed as well: 
(1) Obtain all the torque balance and power balance equations for each BTH and boundary 

conditions, where boundary conditions show whether two shafts connect to each other and 
input/output conditions. 

(2) Carry out matrix operations to get the torques of each shaft in each BTH.  
Thus, one gets all the torque equations of Fig.3 according to Eq.(5) and the above rules, it yields, 
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where γ is the load distribution ratio of two outputs in Fig.3 and T0 is the total output torque of the 
system. Then Eq. 6 can be rewritten in matrix form, 

=MT D                                                                                                            (7) 
where M is the matrix of velocities obtained in Eq. 4, T is the torque vector and D is the constant vector. 
Then the torques on all shafts can be obtained from the equation below, 

1−=T M D                                                                                                        (8) 
Power flow. From the above analysis, powers of each node for all BTHs can be obtained, that is 

=P Tω                                                                                                            (9) 
where P is the power vector. 
The power computed by Eq. 9 is signed values and its directions are given by the following rules: 
     If Pij>0, power flows into the BTH by node ij, 
     If Pij<0, power flows out of the BTH by node ij, 
     If Pij=0, power flows through node ij.  
Circulating power. Circulating power in a planetary gear set will cause extra power losses and 
increase the forces on components. Therefore, it is very important to identify the circulating power in 
planetary gear sets. The approach to calculate the circulating power can be done as following: 

1) Search from an input node in a PGT as the original node, the input should not be the system input. 
If the input node connects with the system input and its power is bigger than the system input, then the 
input power for this PGT should be the power of this node minus the power of the system input; 

2) Following the power flow, find out the node whose power is equal or bigger than the power of the 
original node. If the searching process returns to the original node, the searched nodes comprise a 
circulating route and the circulating power equals to the original node power. 

Example and Conclusions 

Example. In this section, an example will be applied to manifest the method proposed above. Fig.1 is a 
typical geared rotary actuator composed of compound planetary gear sets in flight control system. The 
power flow analysis of Fig.1 will be investigated and the parameter influence, such as character ration, 
load coefficient, etc., on circulating power and system input power will be studied as well. The basic 
parameters for CPGS in Fig.1(b) are shown in Table 1. 
 

Table 1 Basic parameter of the system 
 a1/b1/c1 a3 b3 c3 Pa Pb Pc 
Teeth 
number 

21 180 165 180 80 65 80 

m[mm] 1 
α [°] 20 
Gear ratio 83.229 
ρa, ρc 8.57 
ρb 9.67 

 
In order to analyze the power flow of the system, the system input velocity is set to 500rpm, the total 

load on output rings in Fig.1(b) is set to 2000Nm and γ=1. Based on velocity, torque and power 
equations Eq. 4, Eq. 8, Eq. 9, the normalized powers to input power of each component in Fig.3 are 
obtained as shown in Fig.4. From Fig.4 one can see that the powers on sun gears of three simple 
planetary gear sets are different. However, their summation equals to system input power because they 
are combined as one component physically. The output powers of ring a3 and ring c3 equals to half of 
the system input power because the load distribution ratio γ=1. The powers on three carriers are much 
higher than system input power and the power on the carrier of simple planetary gear set b is different 
from that of the other two simple planetary gear sets. Although the three carriers connect together 
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physically, there are inner interaction among them, which may cause heavy load on carrier bearings and 
reduce the strength of planet gear pin and the life of bearings.  
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Fig.4 Normalized power of each component in Fig.3 

 
Fig.5 is the power flow of the system based on the results in Fig.4 and powers flow along the arrow 

lines. The input power flows into a1/b1/c1 component, then the power in a1 is split into two paths, that 
is a3 and a2, as such, the power in c1 is split into two paths c2 and c3. The powers of a3 and c3 are 
system output power, while the powers of a2 and c2 are combined to b2 and then flow back to b1. This 
means there are two circulating powers in this system, one is a1-a2-b2-b1-a1 and the other is 
c1-c2-b2-b1-c1. The circulating power is about ten times of system input power. This high circulating 
power will cause additional power losses and reduce the strength and life of some components. 
Therefore, designer should reduce the circulating power in this system. In addition, this kind of 
circulating power cannot be found by traditional analysis method using formulas and it might cause the 
planet gear tilting in the GRA which could induce the heavy wear between the planet gear and the 
carrier. 
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Fig.5 Power flow of Fig.3 

 
Characteristic ratios are important parameters in the design of compound planetary gear sets. Here, 

the influence of characteristic ratios on circulating power will be investigated and a reasonable range of 
characteristic ratios for the system will be determined. In order to keep the system gear ratio constant 
around 83.229, the characteristic ratio of planetary gear set b will change with the increase of that of 
planetary gear set a. It is obvious that the normalized circulating power decreases with the increase of 
characteristic ratio ρa as shown in Fig.6(a). It will reduce about 20% circulating power if the 
characteristic ratio ρa equals to 9 instead the given value 8.57 in Table 1. From Fig.6(b) it can be 
observed that the characteristic ratio ρb has almost linear relationship with ρa to keep the system gear 
ratio constant. Hence, increasing the characteristic ratio of the system is an effective way to reduce 
system circulating power. 
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(a)                                                                                 (b) 

Fig.6 (a) Relation between circulating power and characteristic ratio ka; (b) kb vs. ka by keeping R 
around 83.229 

 
Conclusions. In this paper, a new method using hypergraph in the power flow analysis of compound 
planetary gear sets in geared rotary actuator is proposed. The equation establishment method of 
kinematics and torques based on hypergraph was investigated and the circulating power calculation 
approach was also studied. A GRA on the aircraft was taken as an example to highlight the method. 
The influence of parameters on power flow and circulating power was also investigated. 
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