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Abstract. Since real load characteristics are time-varying all along, load model parameters built on 
some historical data are only valid within limited scenarios. A real-time dynamic load model parameter 
selection method based on multiple linear regression (MLR) is proposed to find the load model 
parameters that are best matched with real time system operation condition from load model 
parameters history database. And along with the database size growing larger, the load model 
parameter matching accuracy will become higher and higher. The effectiveness and accuracy of the 
proposed method are verified on field measurement data collected from a substation in a metropolitan 
area of China. 

Introduction 
Real-time load dynamic characteristics are varying along with time, month, season, holiday, 
temperature, etc., since the aggregate load always consists of various and time-varying components 
with different characteristics [1]. The randomness of power loads and the variety of their composition 
make accurate load modeling a most challenging task [2-3]. 

Classification and synthesis for load dynamic characteristics has been proposed as a good way to 
settle the time-variation problem in load modeling in [4-8]. Yet limited classifications can t express 
constantly time-varying load characteristics well enough, and different classes may also intersect 
together. Based on assumptions of the error function, a multicurve identification technique has been 
proposed in [1] to derive load model parameters, and the generalization capability of the built model 
also investigated to meet most random scenarios in power system. However, it conceals the stochastic 
parameter fluctuation in the real-time load model, and also sacrifices the load model accuracy.  

The thesis [9] suggested that more sophisticated measurements and signal processing such as 
stochastic parameter identification could help for the problem of load drift and change in composition. 
[1] also concluded that the load model that captures the inner law of the randomly varied load would be 
the best one. In order to disclose real-time dynamic load model parameters  statistically changing law 
and hence enhance load model accuracy, a load model parameter selection method based on MLR is 
proposed to find the load model parameters from load model parameter history database that are best 
matched with real time system operation condition. By this way, the load model parameter matching 
accuracy will become higher and higher along with the database size growing larger, which improves 
the precision of power system simulations under large disturbances so as to determine more precise 
settings for real-time voltage stability or transient stability control and protection devices, etc.. 

Real-Time Dynamic Load Model Parameter Selection 

Load Model Parameters Database Foundation. The load model we built is mainly for power system 
stability simulation and control. Thus, it should be easily integrated into the power system analysis tool. 
Furthermore system operators prefer a load model with clearly physical interpretations. So ZIP 
augmented with induction motor is chosen as aggregate load model structure in this paper. The model 
consists of a static part modeled as ZIP and an equivalent circuit of the third-order induction motor, 
whose detailed equivalent circuit, algebraic and differential equations can be found in paper [1]. 
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In this paper, differential evolution (DE) algorithm[10] is applied in load model parameter 
identification for all the historical recorded system disturbances data because of its strong global 
optimization searching capability, forming load model parameters history database. With accumulation 
of field measurements and their corresponding load model parameters history database, it becomes 
easier to find the statistical law behind the seemingly irrelevant load data, and the model that captures 
the inner law of the randomly varied load would be the best one. 
Load Model Parameter Selection Based on MLR. Regression analysis approach can investigate the 
relationship between two or more variables related in a nondeterministic fashion, and are often used to 
perform prediction. Real-time load dynamic characteristics are varying indeed along with time, month, 
season, holiday, temperature, bus voltage and its fluctuation magnitude, active power, reactive power, 
apparent power, power oscillation amplitude, etc.. A load model parameter selection method based on 
MLR[11-12] is proposed to search the load model parameters from load model parameter history 
database that are best matched with real time system operation condition in this section. 

In order to evaluate load model output errors between different disturbances, a revised load model 
output error 'kE  is defined in Eq. 1. 
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where ' '/k k
j jP Q  denote the field measured active, reactive power respectively for the specific system 

disturbance k with data size nk; k
jP  and k

jQ  are the corresponding simulated active, reactive power; 
' max ' min/k kP P  and ' max ' min/k kQ Q  denote the field measured active, reactive power oscillation upper and 

lower limits respectively. 
Obviously 'kE  is a random dependent variable changing with predictor variables, e.g. time of day 

1X , day of week 2X , month of year 3X , temperature in the load area 4X , initial voltage of the load bus 
5 0

kX Uã , voltage temporarily descending magnitude 6X  (seen in Eq. 2), voltage temporarily ascending 
magnitude 7X  (seen in Eq. 3), actual initial active power '

8 0
kX Pã , actual initial reactive power 

'
9 0

kX Qã , power oscillation magnitudes 10
kX Sã Ü  (seen in Eq. 4)) etc.. MLR model for load model 

output error is built as (5) accordingly. 
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0 1 1 2 2 p pY X X Xã õ õ õdõ õ .                                                                                                  (5) 
where max min/k kU U denote the field measured bus voltage upper and lower limits; 0 1, , , pd  are the 
regression coefficients, relating the revised load model output error 'kY Eã  to the explanatory 
variables 1 2, , , pX X Xd ;  is the residual error accordingly, assumed to be normally distributed with its 
mean value ø ÷ 0E ã  and variance value ø ÷ 2V ã . 

After load model parameters history database has been built for all of the Ns history disturbances, 
simulate the other Ns-1 disturbances and compute the corresponding revised load model output error 

'kE  with one identified load model parameters in the database. Now Ns dimensional revised load model 
output error vector Y is obtained in the form S

T''1 ' 2, , ,Y NE E E7 'ã d5 % , with Ns  dimensional vector 

1 2, , ,X X X pd  for each independent variable, i.e. 
S

T

1 11 12 1, , ,X Nx x x7 'ã d5 %  etc.. 
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Since all the independent variables can be obtained online or determined by a preset disturbance k, 
real-time 'kE  can be predicted by the MLR model introduced in detail in this section as a match quality 
indictor measuring whether the chosen load model parameters are suitable to be selected as real-time 
load parameters or not. After all load model parameters history data are chosen to perform multiple 
linear regressions in order to predict 'kE  for the online conditions, the load model parameters with the 
smallest 'kE  prediction value are chosen as online load parameters. 
Standardizing Variables. Let ix  and si be the sample average and sample standard deviation of the xij 
(j=1, ,Ns), seen in Eq. 6. When values of variables are larger in magnitude, it is advantageous to code 
each variable xi by ø ÷' /i i i ix x x sã ó . 
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Multiple Linear Regression. Substitute all the remained predictor values into Eq. 5, get a matrix form 
equation as: 

Y Xã õ .                                                                                                                                        (7) 
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Solve the following equation in order to find least squares estimates  of regression coefficients . 
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and the regression function is: 

0 1 1 2 2 p pY X X Xã õ õ õdõ .                                                                                                        (9) 
The estimate of variance 2  is: 
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where SSE is the sum of squared errors. However the estimated  and 2  can not be used in the 
regression function to predict yet. 
Outlier Check. When standard error absolute value ø ÷ / 2i iy yó â  or 3, this data is regarded as an 
outlier and should be deleted[12], or check the original data again. 
Variable Selection. If at least one predictor highly depends on other predictors, the data is said to be 
exhibit multicollinearity. This can be found by correlation coefficient ø ÷

1 2
,i iX X  computation[11-12] 

between any two predictors: 
1i

X and 
2i

X . If ø ÷
1 2
, 0.7i iX X â  and ø ÷ ø ÷

1 2
, ,i iX Y X Yâ , 

1i
X  has a 

stronger relationship with Y than 
2i

X , and should be remained in the regression model while 
2i

X  should 

be treated properly depending on the value of ø ÷2
,iX Y . In the test case, 

2i
X  is deleted. 

The Coefficient of Determination. The coefficient of determination, denoted by R2, is given by 
ø ÷ Å Ã2

SR ST SR SR SE/ / 0,1R S S S S Sã ã õ R . The total sum of squares SST measures the total amount of 
variation in observed y values, defined in Eq. 11. Regression sum of squares SSR is the amount of total 
variation that is explained by the regression model, seen in Eq. 12. The higher the value of R2, the more 
successful is the simple linear regression model in explaining y variation. As in polynomial regression, 
R2 is often adjusted for the number of parameters in the model by the formula Eq. 13. 
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The Model Utility Test.The value of R2 is sometimes deceptive because it can be greatly inflated by 
using a large number p of predictors relatively to the sample size Ns. The model utility test in linear 
regression involves the null hypothesis H0: 1 2 0pã ãdã ã , which says that there is no useful 
relationship between Y and any of the predictors. The test is based on a statistic that has a particular F 
distribution by the formula 

ø ÷ ø ÷ ø ÷SR SE S S/ / / 1 ~ , 1F S p S N p F p N pã ó ó ó ó7 '5 % .                                                                             (14) 
If the proportion of explained variation is high relative to unexplained, e.g. in the rejection region for 

a level  test ø ÷1 S, 1F F p N póâ ó ó , we would naturally want to reject H0 and confirm the utility of the 
model. 
Model Parameters Validation. A test for the null hypothesis H0j: 0j ã , uses the t statistic value 

j
t , 

which means that there is no useful relationship between Y and the predictor jX . 
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If 

j
t  is in the rejection region for a level test ø ÷1 /2 S 1

j
t t N póâ ó ó , we would naturally want to reject H0 

and confirm the model parameter validation. Otherwise, delete the variable jX  and make regression 
again. 

Now the predicted point estimate of fy  when ø ÷ ø ÷S Sf 1 1 11, , ,x N p Nx xõ õ
7 'ã d5 % is obtained by Eq. 16. 

f fxy ã .                                                                                                                                       (16) 
A 1-  confidence interval for fy  is: 
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óo ó ó l l õ õ ó ó .                                                         (17) 
Real-time Load Model Parameter Selection Procedure. Firstly the load model parameters 
identification based on DE is performed for all the latest history disturbances for a period of time so as 
to build load model parameters database, and then history disturbances are classified according to 
voltage oscillation magnitudes, i.e., descending and ascending magnitudes. 

Load model structure is related to system disturbance magnitude. ZIP augmented with induction 
motor model is valid within voltage variation scope between 0.8 p.u. and 1.2 p.u., which can be applied 
to short-term voltage stability[13-14] and transient stability analysis. When voltage and frequency 
fluctuate larger, broad spectrum load modeling[15] in medium-term and long-term dynamic progress 
needs to consider the effect of low-frequency and low-voltage load shedding[16], low-voltage relay 
action[17], etc., which is beyond the study topic in this paper and will be studied further in our future 
works. So we classify disturbances into small disturbance set sZ , large disturbance set LZ  and 
common disturbance set cZ  as following. 

ø ÷ ø ÷¥ £max min
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Secondly using the identified load model parameters for each disturbance in the same class, MLR 
model is established to predict the real-time revised load model output errors. At last choose the load 
model parameters whose point estimate is the smallest in the class as the real-time load model 
parameters after all the regression models have been accomplished. 

The selection procedure is performed online every 5 minutes or so to find out the best load model 
parameters from history database since the MLR CPU time is short enough for online analysis, which 
serves for online voltage stability, transient stability analysis, etc.. 

Test Case 
In this section, the results of applying the proposed real-time load modeling parameter selection 
method to a 220 kV substation in a metropolitan city in China, are presented to show its effectiveness. 
All computations were performed in a 2.4GHz Intel CPU, 4GB RAM machine. 49 useful disturbances 
were measured in the substation from February 2010 to May 2012 by means of voltage oscillation 
detection. The base value of original capacity and voltage are chosen as SB=100MVA, UB=220kV. 

The 49 disturbances are classified into 3 sets according to disturbance classification criterion in Eq. 
18~ Eq. 20, leading to 31 disturbances left in set cZ . The load model parameters are firstly identified by 
means of the DE algorithm proposed in [10] with the same load model parameters limits. 

Since the prediction capability of the model can only be found in new, unseen measured data, the 
whole data set can be divided into the training data set and the test data set testifying real-time load 
model parameters matching ability of the proposed method. The last 3 disturbances are used as 3 online 
data and the others are utilized to establish MLR models. In this paper we only present results of 
common disturbance set cZ , and do not discuss large disturbance set LZ . So Ns=28. 
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Fig.1. iy versus iy  for the 1st disturbance. Fig.2. Prediction based on the 2st disturbance. 
All the disturbances pass F tests. Fig. 1 shows yi versus iy  for the first disturbance data. It is clearly 

shown that revised load model output error fluctuates largely with different disturbances under 
different operation conditions along with time variation when load model parameters built on one 
disturbance field measurement data are adopted to simulate all the other disturbances, and the error 
does not definitely become bigger when disturbance occurs longer time later. Table 1 gives the 
regression coefficients and coefficient of determination for two regression models according to two 
disturbances respectively. In the first disturbance, ø ÷6 10, 0.895X X ã >0.7 and 

ø ÷6 , 0.254X Y ã ó < ø ÷10 , 0.608X Y ã , so predictor X6 is deleted, and because of ø ÷27 27 / 2y yó â , so 
the 27th disturbance data is outlier and deleted from the linear regression model. 
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Table 1 Regression parameters and Computational time 

Disturbance 1 2 Disturbance 1 2 
0  0.19744 0.19136 7  0.02271 0.01379 
1  -0.02179 -0.01659 8  0.04273 0.04949 
2  -0.00554 0.00851 9  0.06992 0.06768 
3  0.14318 0.11203 10  0.03061 0.01622 
4  -0.14826 -0.10913 2

aR  0.83140 0.82064 
5  0.02765 0.00245 Time (s) 0.327 0.312 
6  - -    

Point estimation and 1-0.05 confidence interval of yf for the last 3 disturbances in set cZ  are 
obtained through the built MLR models; Fig. 2 shows the prediction effects based on the second 
disturbance. The estimations of yf are surrounding the real load model output error by simulation using 
the same load model parameters. 

After all regression models of the disturbances in each set are obtained, estimation values of yf are 
compared with each other, and the load model parameter of the smallest one is chosen as real-time load 
model parameter. Table 2 shows some typical estimation values and real simulation values of yf. 

Table 2 Estimation values of yf   

Num. f1y  f2y  f3y  f1y  f2y  f3y  2
aR  

2 0.076 0.049 0.044 0.142 0.182 0.082 0.82 
13 0.024 0.015 0.220 0.117 0.116 0.170 0.85 

17 0.180 0.128 -0.05
5 0.150 0.197 0.100 0.77 

21 0.692 0.698 0.404 0.605 0.801 0.536 0.88 
23 0.715 0.637 0.127 0.502 0.684 0.392 0.73 
26 0.145 0.103 0.590 0.185 0.200 0.272 0.80 

Table 3 Part predictor values 

Num. Year Date Time Te.[ ] U0[pu] P0[pu] Q0[pu] 
13 2010 12-21 07:19:42 24.8 1.064 0.486 0.078 
17 2011 4-17 13:09:57 23.0 1.058 0.696 0.124 
22 2011 10-1 05:22:34 23.4 1.067 0.467 0.075 
29 2012 4-29 03:17:57 22.0 1.061 0.318 0.090 
30 2012 4-29 03:20:07 22.0 1.061 0.315 0.085 
31 2012 5-6 15:35:48 29.9 1.045 0.635 0.119 

Depicted as bold character in Table 2, f1y  and f2y  of the 13th disturbance, f3y  of the 17th disturbance 
are the smallest among all the disturbances, so the load model parameters identified by the 13th 
disturbance data are chosen as real-time load parameters at the time when the 29th disturbance occurred 
and also at the time when 30th disturbance occurred, and use these load parameters to simulate the 29th 
(seen in Fig. 3) and 30th disturbances with their revised output errors 0.117/0.116 respectively; the load 
model parameters identified by the 17th disturbance data are chosen as real-time load parameters at the 
time when the 31th disturbance occurred, and use these load parameters to simulate the 31th disturbance 
with its revised output errors 0.100. On the contrary, f1y  of the 23th disturbance, f2y  of the 21th 
disturbance and f3y  of the 26th disturbance are the biggest each among all the disturbances; Simulate 
the 29th disturbance with the load model parameters identified by the 23th disturbance data, the revised 
output error is 0.502 (seen in Fig. 4). The fitting accuracy is greatly improved to use the load model 
parameters identified by the 13th disturbance data than by 23th disturbance data as real-time load 
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parameters at the time when the 29th disturbance occurred. In order to validate the prediction effect 
further, load model parameters are identified by aforementioned DE algorithm based on the the 29th 
disturbance field measurement data, with its revised output error 0.097 which is little smaller than 
0.117. 

It can be seen in Table 3 that the disturbance occurrence time of day, temperature, U0, P0 and Q0 
among the 13th, 29th, and 30th disturbance are closely adjacent, which is a necessary but not sufficient 
condition of good fitting since these values of the 22th disturbance are also close to them of 29th and 
30th disturbance. This also verifies better validation of statistic method than cluster and synthesis 
methods in load modeling. 

0 0.02 0.04 0.06 0.08 0.1 0.12

0.96

0.98

1

1.02

1.04

1.06

1.08

Time (s)  

0 0.02 0.04 0.06 0.08 0.1 0.12
0.2

0.25

0.3

0.35

0.4

Time (s)

 

 

Simulated
Recorded

 
0 0.02 0.04 0.06 0.08 0.1 0.12

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Time (s)
 

 

Simulated
Recorded

 
Fig.3. Voltage and power curves based on the 29th disturbance recorded data and simulation using the 

load model parameters identified by the 13th disturbance data. 
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Fig.4. Power curves based on the 29th disturbance recorded data and simulation using the load model 
parameters identified by the 23th disturbance data. 

Conclusions 
Based on the MLR method, a real-time load model parameters selection method is proposed in this 
paper to deal with load model parameter variation problem. After disturbances classification based on 
voltage oscillation magnitude, the constructed MLR method can well delete the worst load model 
parameters and find the best load model parameters from load model parameters history database in 
most cases. 

The proposed real-time load model parameters selection method breaks through traditional load 
model parameter classification mode. With the increasing number of identified load model parameters 
in the database, the load model dynamic characteristics can be better grasped and the chosen 
parameters will fit the online load with enough accuracy, while the traditional method can only classify 
load model parameters into several classes which cannot depict the varying load dynamic 
characteristics well enough. 

The CPU times associated with the MLR method shown in Table 1 completely meet online speed 
requirements. Even after considering history load model parameters database increasing in the future, 5 
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minutes period is enough to exert real-time parameters selection computation. So all the load 
parameters are updated online periodically every 5 minutes, and serve for online voltage stability and 
transient stability analysis, etc.. 

Acknowledgements 
This work was financially supported by the National Science Foundation of China under Grant No. 
51377072 and Jinan University Scientific Research Starting Foundation. 

References 
[1] R.M. He, J. Ma, and J.H. David: IEEE Trans. Power Syst., Vol. 21 (2006), p. 663. 
[2] H. Bai, P. Zhang, V. Ajjarapu: IEEE Trans. Power Syst., Vol. 24 (2009), p. 1145. 
[3] Q. Ai, D. Gu, C. Chen: IEEE Trans. Power Syst., Vol. 21 (2006), p. 1864. 
[4] R.M. He, W. Zhou: Automation of Electric Power Systems, Vol. 23 (1999), p. 12. (In Chinese). 
[5] X.R. Li, Y.X. Chen, and S. Su: Automation of Electric Power Systems, Vol. 25 (2001), p. 20. (In 
Chinese). 
[6] P. Ju, Y. Jin, F. Wu, Y. Cheng: Automation of Electric Power Systems, Vol. 28 (2004), p.64. (In 
Chinese). 
[7] J.H. Shi, R.M. He: Proceedings of the CSEE, , Vol. 24 (2004), p. 78. (In Chinese). 
[8] S.J. Lin, X.R. Li, H.H. Chen, et al: A New Classification and Synthesis Method for Load Dynamic 
Characteristics based on Field Measured Response, Proc. Int. Conf. Power System Technology, 
Chongqing, China, Oct. 22-26, 2006. 
[9] D. Karlsson, D.J. Hill: IEEE Trans. Power Syst., Vol. 9 (1994), p. 157. 
[10] Y.L. Huang, X. Chen, M.B. Liu, et al: Transactions of China Electrotechnical Society, Vol. 28 
(2013), p. 270. (In Chinese). 
[11] Jay L Devore: Probability and statistics for engineering and the sciences, Higher Education Press, 
Beijing, 2004 (In Chinese). 
[12] N.M. Xia: New theory of probability and mathematical statistics, East University of Science and 
Technology press, Shanghai, 2011 (In Chinese). 
[13]Y.Q. Jing, X.Y. Li, X.M. Guo, et al: Automation of Electric Power Systems, Vol. 35 (2011), p. 10. 
(In Chinese). 
[14] S.J. Lin, X.R. Li, Y.H. Liu, et al: Proceedings of the CSEE, Vol. 29 (2009), p. 14. (In Chinese). 
[15] P. Ju: The theory and method of power system modeling, Science Press, Beijing, 2010 (In 
Chinese). 
[16] S.X. Zhou, L.Z. Zhu, X.J. Guo, et al: Power system voltage stability and its control, China Electric 
Power Press, Beijing, 2009 (In Chinese). 
[17] P. Kundur: Power System Stability and Control, McGraw-Hill, New York, 1993. 

706




