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Abstract. Component extraction is wide used in biomedical signal processing. Traditional 
independent component analysis (ICA) techniques aim to estimate all underling components from 
their mixtures simultaneously. To overcome the drawbacks, a constrained separation approach is 
presented for extraction of one or a few desired source signals. Its performance is demonstrated by 
computer simulations on biomedical signals. 

Introduction 
Independent component analysis (ICA) is a statistical and computational technique for revealing 

hidden factors that underlie sets of measurements [1,2]. Generally speaking, ICA defines the 
following model for the observed multivariate data, which is typically given as a large database of 
samples: 

Asx = ,                                                                          (1) 
where T

msss ),,( 1 L=  denotes the original independent sources, T
nxxx ),,( 1 L=  denotes mixtures 

of original sources and A  is an unknown mixing matrix. The assumptions of an ICA problem are that 
each component of S  has 0 as its mean value, mutually independent and drawn from a probability 
distribution which is not a normal distribution except for at most one component [3]. For technical 
simplicity, m  is also supposed  to be smaller than or equal to n . In fact, this assumption is necessary 
for the existence of a linear solution.  Without  knowing the source signals and the mixing matrix, ICA 
technique aims to recover independent components from their observed mixtures using some 
statistical properties of original sources [4].  However, traditional ICA technique only copes with the 
simultaneous recovery of source signals from their mixtures [5]. In most cases especially in 
biomedical signal processing, the number of original sources is often large while only one or a few are 
desired.  

In many ICA applications such as  biomedical signal processing, there are more or less additional 
requirements  along with prior information [6]. In other words, someone can know specific prior 
information about the desired source signal in advance. In this paper, we introduce such prior 
information to a negentropy based contrast function so as to construct a constrained independent 
component analysis (cICA) problem. Thus the ill-posed ICA is converted to a better-posed problem, 
facilitating more applications. Solving the cICA problem, a flexible cICA algorithm is developed for 
extraction of one or a few desired source signals exclusively. Computer simulations on biomedical 
signals demonstrate its validity and usefulness. 

Constrained ICA Techniques  
To formulate the ICA problem, one must construct a reliable contrast function, which is greatly 

dependent on the parameters of the specified neural network model in (1). 
Maximization/Minimization of such a contrast function should make the output of the model satisfy 
the statistical conditions of stochastic independence and other inherent properties, depending on the 
specific problem. For instance, the BCBSE algorithm [2] proposed by Barros and Cichocki is 
performed by making the output independent and uncorrelated for different time delays.  

What we do for cICA problem is to find a separating or demixing  vector  w  so that xwy T= ,                     
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where y  is equal to the desired source signal. 
For extracting one source signal, a classical negentropy based contrast function [4,5] is  

2)}]({)}({[ )( vGEyGEyJ −= ρ ,                                                         (2) 
where v  is a Gaussian variable with zero mean and unity variance, ρ  is a positive constant, and 

(*)G  can be any non-quadratic function, such as 
  111 /)(log)( ayacoashyG = ,                                                         (3) 

  2
2

22 /)
2
1exp()( ayayG −= ,                                                          (4) 

    4/)( 4
3 yyG = ,                                                                     (5) 

where 21 1 ≤≤ a  and 12 ≈a . 1G  is a good general purpose function; 2G  may be better when the 
independent components are highly super-Gaussian, or when robustness is very important; 3G  is 
justified on statistical grounds only for estimating sub-Gaussian signals when there are no outliers. 

The gradient of )( yJ  with respect to w  can be deduced as 
)}({2)( xwxgEyJ T

w γ∝∇                                                          (6) 
where )}.({)}({ vGExwGE T −=γ  Thus one can deduce the famous FastICA algorithm [4,5]: 

)}({2 xwxgEw Tγ← .                                                               (7) 
As a typical one-unit ICA algorithm, FastICA has many desirable properties [4-6]. However, 

maximization of (2) will give any of source signals. When one is only interested in a specific source 
signal, FastICA has to estimate source signals one by one, thus introducing a large amount of 
additional computational burden. FastICA is of little use while only one source signal is desired.  

In most cases of biomedical signal processing, one may know specific prior information about a 
desired source signal in advance [5,6]. In this paper, we introduce such  reference to modify the 
one-unit algorithm (6), thus ensuring the output is necessarily the desired one. 

The closeness measure between an estimated output y  and its corresponding reference r  is 
denoted by ),( ryξ . Further suppose that  mw  or *w  is the demixing vector for the desired signal and 

)1,,1( −= miwi L  are the demixing vectors for undesired components. Note that the desired source 
signal is the only one closest to the reference signal r , satisfying the following inequality 
relationship: 

) ,~() ,~() ,~( 11
* rxwrxwrxw T

m
TT

−≤≤≤ εεε L .                                              (8) 
In fact, the extracted signal xw T ~*  is equal to *y  if and only if the following inequality relationship 

is satisfied: 
0),~()( ≤−= ξε rxwwg T ,                                                      (9) 

where )) ,~( ), ,~([ 1
* rxwrxw TT εεξ ∈  is a threshold parameter. 

Through introducing (9) into the negentropy contrast function (2) as a constrained term, we can 
deduce the following constrained optimization problem: 





=−=≤
−=

01)E(yh(w) ,0)(..
)}]({)}({[)(max

2

2

wgts
vGEyGEyJ ρ

,                                             (10) 

where the equality constraint aims at bounding )( yJ  and w . 
The inequality constraints of (10) can be transformed into equality ones by introducing a vector of 

slack variables, so the optimal solution can be obtained by the Lagrange multipliers method [1,6]. 
Subsequently, through finding the maximum of the augmented Lagrange function, we can deduce the 
following learning rule for w : 

21
1

1 /ψΨη −
+ −= ztt Rww ,                                                                     (11) 

}{)}({5.0)}({ ''
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λµρψ −−= )}({5.0)}({ ''''
2 22 yzgEyzGE yy ,                                                   (13) 

where t  is the iteration count, }{ T
z zzER = , ))()(( vEGyEGsign −⋅= ρρ , )(' yG y  and )(' yg y  are 

the first derivatives of )(yG  and )( yg  with respect to y , and )(''
2 yG y  and )(''

2 yg y  are the 

corresponding second derivatives.  

Simulation Results  
To confirm validity and usefulness of the proposed algorithm in this paper, we performed 

computer simulations on real ECG data. The data set shown in Fig.1 was distributed by De Moor [7], 
which was a well-known electrocardiogram measured from a pregnant woman.  
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Fig.1. The ECG recording obtained from a pregnant woman 

 
These measurements were recorded over 10s and sampled at 250 Hz with 8 electrodes located at 

abdomen and thorax of a pregnant woman. Signal S1-S5 were the recordings by five electrodes placed 
on the woman’s abdomen. Therefore the FECG, respiratory motion artifacts as well as the maternal 
ECG (MECG) were visible in these recordings. Signal S6-S8 were the recordings by three electrodes 
placed on the woman’s thorax. In these thoracic measurements, the FECG was invisible because of 
the distance between the fetus and the chest leads. Generally speaking, one can see the heart beating of 
both the mother (stronger and slower) and the fetus (weaker and faster).  

In contrast to the conventional diagnostic techniques merely on the basis of the fetal cardiac rate 
estimation [3,4], the non-invasive extraction of the FECG from the maternal cutaneous potential 
recordings offers more detailed information about the fetus’s heart. It must be mentioned that  the 
measured FECG is always corrupted by various noise, such as the maternal electrocardiogram 
(MECG) with extremely high amplitude, the mother’s respiration, and the thermal noise due to 
electronic equipments [5]. Fortunately, these components are statistically independent. Therefore, one 
can use ICA technique to extract the desired FECG. Barros and Cichocki [2] formally defined the 
prerequisites to extract the desired FECG using only prior information about its autocorrelation 
function. This algorithm  needs specific prior information about the desired source signal in advance, 
namely, a suitable time delay at which the autocorrelation of the desired source signal has a peak 
whereas those of other source signals have low values. Since the desired FECG satisfies the 
constrained condition, the BCBSE algorithm can be used for FECG extraction.  However, the 
extracted FECG often contains noise contributions, such as the mother’s breathing artifact [4,5]. 
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The reference signal need not be a perfect match to the desired signal (if it were, one would argue 
that there would be little point in introducing the constrained ICA method at all). Although the 
BCBSE algorithm [2] cannot extract an elaborate FECG, the extracted signal is a rough template of 
the desired FECG. So we may consider the output of the BCBSE algorithm as the reference signal. 
The BCBSE algorithm requires prior information about the desired signal’s autocorrelation 
information and needs to estimate a time delay. The true time delay for extraction of the FECG is 112 
[2,3]. Here we set the optimal time delay as *τ =112. The extraction result is shown as BCFECG in 
Fig.2. One can see that the extracted BCFECG is still contaminated by various noise even if the true 
time delay is adopted. 

Fortunately, the morphology of the desired FECG can be obtained from the BCFECG. In other 
words, the BCFECG can be utilized as a reference signal. We ran the algorithm proposed in this paper 
using the BCFECG as a reference signal for extraction of the desired FECG. The extraction results 
were described as FECG1 in Fig.2. To make comparison, we also ran other typical algorithms [3,4] 
for FECG extraction. ICA-R and FECG2 shown in Fig.2 are the corresponding results of  algorithms 
in [3,4] and [5]. 
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Fig.2. The extracted FECGs by different algorithms 

 
From these simulation results, one can see that the extracted signal by the ICA-R algorithm [3,4] is 

still mixed with noise. The algorithm in [5] can obtain good results. However, its computation load is 
still large. The desired FECG can be  extracted efficiently with the proposed method in this paper, and 
that the noise, which is present in the reference signal, is almost invisible here. Generally speaking, 
the algorithm proposed in this paper has better properties in contrast to other ones. 
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