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Abstract. In this paper, we present a mixed covolume method for the initial-boundary value problem
of the pseudo-parabolic integro-differential equation. This method uses the lowest order
Raviart-Thomas mixed element space on triangles as the trial space. The convergence analysis shows

that this method yields the approximate solution with optimal accuracy in H(div;Q)x L*(Q) .

Introduction

Consider the following initial-boundary value problem of the pseudo-parabolic integrodifferential
equation

(a) u, =div(aVu, +bVu+ b Vudt)+ f,(x,t) € Qx(0,T],
t t 1 0 2

b) u(x,t)=0, (x,1) € 0Qx (0,71, (1.1)
(c) u(x,0)=1u,(x), xeQ.
where Q is a bounded convex polygonal domain in R* with the boundary 6Q, 0< T <. u, = Z—u ,V
4

and div denote the gradient and the divergence operators, respectively. The functions a,b,,b, with
their derivatives are smooth enough, and there exist two positive constants ¢, and ¢, such that
0<c¢ <a<c,. Here and in what follows, we will not write the independent x,¢,7 for any functions
unless it is necessary. Vectors will be expressed in boldface.

Introduce a new variable p = —(aVu, +bVu + tb Vudr),andlet o« =a™',b=ab,, B =-Vb,
t 1 0 2 1

c=ab,,y ==Vc,then (1.1) can be written as a system of first-order partial differential equations

(a) ap+Vu, +V(bu)+ Pu +j(: V(cu)dr)+j; yudt = 0,(x,t) € Qx(0,T7],

(b) u, +divp=f, (x,¢) e Qx(0,T1], (1.2)
() u(x,1)=0, (x,0) € Q% (0, T,
(d) u(x,0)=u,(x), xeQ.

The pseudo-parabolic integro-differential equation is an important integro-differential equation
because of its wide application in many practical problems such as fluid mechanics, nuclear
dynamics, or biomechanics. The existence and uniqueness problem of the solution has been done
in[6, 14, 10, 11].

Recently, some numerical methods of (1.1) or (1.2) are studied by several authors([16,3]). In [16],
Zhou et al. studied a H'-Galerkin mixed finite element method of the problem (1.1) and proved the
optimal convergence of the method. In [3], Che studied the mixed finite element method of (1.2) and
obtained the optimal error estimates of this mixed finite element scheme in the H(div;2)-norm and
L*-norm.

The purpose of this paper is to study the mixed covolume method for the problems (1.2). Mixed
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covolume method was first proposed by Russell([13]). The basic technique of this method was to
relate the Petro-Galerkin scheme to a standard finite element Galerkin or mixed method through an
introduction of the transfer operator y/ that maps the trial function space into the test function space.
This method not only preserves the simplicity of finite difference and the high accuracy of finite
element but maintains the mass conservation law, which is very important to fluid and under-ground
fluid computations. The optimal convergence of the mixed covolume method for linear elliptic
problems on triangular grids was given by Chou et al.([4]), and Yang et al.([15]) extended this
numerical method to the parabolic problem.

In a mixed covolume method for differential systems (1.2) one uses two staggered irregular gridsa
primal grid consisting of primal volumes (elements) and a dual grid consisting of covolumes (dual
elements). The associated discretization equations are derived by integrating the differential equations
over the volumes and using the divergence theorem or the Stokes theorem when proper. The balance
between the numbers of unknowns and equations depends on a judicious placement of the degrees of
freedom for the unknown functions.

The goal of this article is to consider the error estimates of this mixed covolume scheme. We give

the approximate solution with optimal accuracy in H(div;Q)x L*(Q) . Hence we give the following

assumptions.
Assumption 1. We suppose that
(a) 0< L a, ael”0,T;W"(Q)),
C2
() B,y e L°(0,T;(W"(Q))), b,ce L"(0,T;W"(Q)),
(c) u, € H'(Q), feLl”(0,T;}(Q)).

The organization of this paper is as follows. In the next section we describe the mixed covolume
method for the problem (1.1) on triangles. In section 3, we introduce a generalized mixed covolume
elliptic projection associated with (1.2) and study the error estimates of the generalized mixed
covolume elliptic projection. In section 4, using the error estimates obtained in section 3, we establish
the optimal rate of convergence for the approximate solution in the H(div;Q)-norm and L*-norm.

Throughout this paper, we use C (without or with subscript) to denote a generic constant
independent of the discretization parameters, which has different values in different appearances.
We also adopt the standard definitions and notations of Sobolev spaces and their full norms and
seminorms in [1], [5], [9].

Mixed covolume formulation

For the problem (1.2), we adopt VxW as the weak solution space, where the space
W ={uelL(Q)u=0o0n0Q} and the space V = H(div;Q) is the set of all vector-valued functions

ve ’(Q)* such that divv divv e L’(Q) and its norm is defined as
IV = VIE + I divy . 2.1)

Noting that u(x,#)|,,=0 and u,(x,?)|,,=0, the weak formulation associated with (1.2) is to find
(p, u) : [0, T] = VxW such that

(a) (ap,v)+(u, +bu+j;cudr,divv)+(ﬁu +J.;yudr,v) =0,VveV,0<t<T,

(b) (u,,w)+(divp,w)=(f,w), YweW, 0<t<T, (2.2)

(c) (u(0),w) = (uy,w) YweW,
where (-, *) is the (L?)* or L*-inner product.

In order to describe the mixed covolume method for the problem (1.2), we first construct the
partition 7} of the domain Q and the trial function space. Referring to Fig.1, let 7, =UK, be a

quasi-uniform (regular) triangulation of the domain Q, where K3 is the triangle with the barycenter B,
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and i =maxh, , h is the diameter of the triangle K. The nodes of a triangular element K are the
midpoints of the edges of K. Let Py, P, - - -, P, denote the nodes belonging to the interior of Q
and P,

s+l ?

Raviart-Thomas mixed space V,xW, as the trial function space, where the spaces
V,={v, e H(div;Q):v, | =(a+bx,c+by),VK €T,}

--,P, the nodes on the boundary 0Q. Based on the partition 7}, we select the lowest-order

and
W,={w, eW:w, | =const,VK eT,}.

Forany w, =(w,,,w,,) € V,, we define the discrete seminorm and norm as

2 2 2 2 2 2
|Wh|1,h = z (|leh|o,1< +|VW211|0,1< )’ ||wh||1,h = ”Wh” +|Wh|1,h : (2‘3)
KeT,

We introduce the Raviart-Thomas projection [1!'**': V — V, satisfying

(div(p—T1, p),w,) =0, Vw, €W, (2.4)
and the L* orthogonal projection B, :W — W, satisfying
w,,Bu-u)=0 VYw, eW,. (2.5)
Then the following properties of the projections IT, and Pj, hold!*:
[p-T1, p < Chp|,, vpe@' (). (2:6)
|ldiv(p—TT, p)| < Ch'|divp|,,/=0,1  Vdivpe H'(Q), 2.7)
|Pul<Clu),  Vuew, (2.8)
1P =, +h|Bu—u|<Ch?|u|, VueH' (), (2.9)
|Pu—u],, <Chljul,_,,vVuew (). (2.10)

Next, we construct the dual partition 7, = UK; and the test function space. Choose the barycenter
Bof K, €T, and connect it with three vertices of the element K, . Then wepartition K, into three

subtriangles. For any interior node P, which is the midpoint of the edge e, the dual element K, is the

quadrilateral consisting of the two subtriangles which have e as their common edge. For any node P
on the boundary 0Q, the corresponding dual element is the subtriangle, where P is one of the

midpoints of its edges. The dual partition 7, is the union of the interior quadrilaterals and the border
triangles. Referring to Fig.1, the interior node P; belongs to the common side of the triangles

K, =A4 4,4, and K, =A4 4,4 and the quadrilateral 4, B,4,B, is the dual element K; with node
Py. For a boundary node like P, the associated dual element K :,6 is a triangle (A4,B, 4, in this case).

In general, let K; =K, UK

pr» Where when P is a interior node, for example £,K,, =A4,B 4, and
K, =A44B,,and K . =K,, when P is a boundary node. Define the transfer operator
7V, > Q)

Yo Vi = ﬁ:(vh |KP/L (IDJ)XI*(,,/L +v, |1<,,/R (P,')%;(,,/R ), Vve V,,

=
where x; is the characteristic function of the set Q. Now let us define the test function space

associated with the dual partition to be Y, x L, , where Y, = R(y,)= the range of y,.
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Fig.1 Primal and Dual Domains

From the definition of the operator y,, we know that the function w, €Y, is a piecewise constant

vector function. It takes on different constant vectors on the left and right parts of an interior dual
element. Note that the two constant vectors w, |, ~and w, |, ~mustsatisfy w, |, -n=w,[. -n

where n is a fixed normal unit vector to the common edge of K,, and K,,. Obviously, the transfer

operator y, sets up a one-to-one correspondence between thetrial and the test spaces and

dimY, = dimVj,.
Finally, we construct the mixed covolume method for the problem (1.2). For ¢ € (0, 7] ,integrating

the equation (@) in (1.2) on the dual domain X, and applying Green’s formula, we get that

0= jK; (ap+Vu, +V(bu)+ Pu +J.0t V(cu)dt +J.0t yudt)dx o1
:J'K; (o p+ Pu +J.(: yudr)dx+jak; (u, +bu +J.0 cudt)nds ,

where n stands for the unit outer normal direction of 0K, . Noting that the boundary condition
u(x,t) |,o=0 implies u,(x,7)|,,=0, (2.11) can be rewritten as
jK; (ap+ Pu+ J.o yudr)derJ.aK;\aQ (u, +bu+ J.o cudt)nds =0. (2.12)
Integrating the equation () in (1.2) on the primal element K = K, we obtain that
jK(u, +d1Vp)dx=J.dex. (2.13)
For v=(v,v,)€Y,, ue}(Q), let

N,

B(v,u) = ; { LK;/ i, 10 vds+ LK;/ Ly vds} | (2.14)
where n; stands for the unite outer nofmal direction of K; »Jj =1,---,N_. Using the bilinear form B(:, -)
and the transfer operator y,, (2.12) and (2.13) can be rewritten as

(@) (ap+pPu +J.0tyud7:,yh v,)+B(y, v,.u, +bu+ .[(:cudr) =0, Vv, eV,

(b) (”,,Wh)+(din;Wh)=(ﬁWh), VWh EWh,
Replacing p and u in (2.15) by their approximations p, and u,, we construct the semidiscrete

(2.15)

mixed covolume scheme for the problem (1.1) (or (1.2)) as: Find {p,,u,}:[0,7] = V,xW, such that
(a) (ap,+Pu, +j;yuhdr,yh v,)+B(y,v,.u, +bu, +J.0tcuhdr) =0, Vv, eV, te|0,T],
b) (w,,w,)+(divp,,w)=(fw,), vw, e W,,t€[0,T], (2.16)

(C) (uh (0)’ Wh) = (uox Wh ); VWh (S Wh .
From [4] and [15], the operator ¥, has the following properties.
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Lemma 2.1 For any function v , €V, and w, e W, the following relations

B(y,v,,w,)=—(divv,,w,) , (2.17)
75 Vi =V (2.18)
hold.
Lemma 2.2!"! There exists a positive constant C; independent of / such that
1
lav,,y,v, ||2€||Vh I,Vv,eV,. (2.19)
1
Lemma 2.3!"”! For any functions v .4, €V, , the following symmetry relation
Y, Qs Vi =7, Vil (2.20)
holds.
Lemma 2.4/ There exists a positive constant C independent of 4 such that
W=y )V, IECh|IvV,Il,,sVV, €V, (2.21)
|[(xq,,(I-y,)v,)I<Chl|lq, ||1,h|| v, llvq,,v, €V, (2.22)
[ q,(I=7,) V) IEChIqlLll v, I, Va e EH (Q),v, €V, (2.23)
Lemma 2.5!"”) There exists a positive constant C independent of 4 such that
a7, qll,,<Chllqll,, Yqe("),1<q <. (2.24)

Theorem 2.6 There exists a unique solution {p,,u,} in V,xW, for the system (2.16).

Proof. Since the system (2.16) is linear, it suffices to show that the associated homogeneous
system

(a) (ap,+Pu, +.[;yuhdr,yh v,)+B(y,v,.u, +bu, +J.0tcuhdr) =0, Vv, eV,,t€[0,T],
®) (wu,,.w,)+divp,,w,)=(fw,), Vw, e W, te[0,T], (2.25)
(©) (u,(0),w,)=0, vw, eW,.

has only the trivial solution.

In fact, choosing v, =p, in (a) equation and in () equation in (2.25) and using (2.17), we have that

(OL Phah ph)+(uht’uht) = _(ﬁuh + .[0 j/uhdf,j/h ph)_(uh,a(Phb)uh + .[0 (Phc)uhdf)

; (2.26)
~B(y, ;. (b= Bbu, + | (c=PByu,dr)= 4
Lemma 2.2 implies that
1
(@Py 7 P+ (W5t,) 2 1Py I1F + 1w, I (2.27)
1
Noticing (2.18) and the Lemma 4.2 in the four section of this paper, we obtain that
| 4|< CA+h)(||u, ||+jolluh ldo)(Ip I+ 112, 1D
, L1 o1 . (2.28)
< Cllu I+l 142 451y I+l |

Combining (2.26) with (2.27) and (2.28), we have that
P, [+ 11w, lI< C(lu, II+IO||uh |l dr) (2.29)
(c) equation in (2.25) and (2.29) implies that
Il I C| Nl dz <C[ Jlu, |l dz .
Using Gronwall’s inequality we have ||u, ||= 0, which and (2.29) implies that || p, ||[= 0. Hence we

have u, =0 and p, = 0. This completes the proof of the lemma.
By Lemma 2.1, we know that
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B(y,v,u, +bu, +j;cuhdr) =—(divv,,u,, +(BPbu, +J.;(ch)uhdr)

+B(y, v,.(b—Pbyu, + jo (c—Pcou,dr)

which implies that the mixed covolume method (2.16) can be rewritten as: Find
{p,,u,}:10,7]1— V,xW, such that

t . t
(a) (ap,+Pu, +j0 yu,dt,y, v,)—(divv,,u, +(Pbu, +j0 (Bc)u,dr)

+B(y,v,.(b—Pb)u, +jo (c-Fou,dr)=0,Vv, eV, tel0,T], (2.30)
) (u,,w,)+(divp,,w,)=(w,), Vw, e W,,t€[0,T],
© (,(0),w,)=(tpw,), Vi, € W, .

Generalized Mixed Covolume Elliptic Projection

In the study of mixed covolume methods for parabolic problems, we usually introduce a mixed
covolume elliptic projection associated with our equations. Modifying this idea according to our
pseudo-parabolic integro-differential equations, we define a map {p,,u,}:[0,7] = V,xW, such that

(@) @(B, =P, ¥,)—(div v, @, )+ b, ~u)+ [ (@i, —u)dr)

+(ﬁ(ﬁh _u)"'J.(IY(ﬁh _u)dT 97;, Vh):(ap,(l—yh)vh)+([3u+.|.(:7/udr 9(1_7/h)vh)s

Vv,eV,,te,T], (3.1)
(b) (div(p,—p).w,) =0, vw, e W, ,t (0,7,
(C) (ﬁh (0)9 Wh) = (uoawh )r VWh € Wh .

Before collecting the results of the error analysis of #, and p,, let us demonstrate the existence and
uniqueness of the solution of (3.1). In fact, it suffices to show that the associated homogeneous system

@) (ap,»y,v,)—(divv,,i, +bi, +j0 cii, dr) +(Bi, +j0 yii,dt ,y,v,)=0, Vv, eV,,1e[0,T]
(b) (divp,,w,)=0, vw, e W,,t€[0,7T],
() (@, (0),w,)=0, Vw,eW,.

(3.2)
has only the trivial solution. Taking w, =divp, in (b) equation and v, =p, in (a) equation in
(3.2), we have by using Lemma 2.2 and Lemma 2.1 that

|- - - - - - Lo
=B, IP< @By, B,) = (B, + [ yide.y, B) < A, I+ 11, a0,
1
which implies that
1B, I'<C(l4, ||+follﬁh || d7). (3.3)

On the other hand, from [11] we know that for V;, xI¥, there exists a positive constant C

independent of / such that

w,|<C  sup W, divy,) (3.4)

vieVvi20 ||V, ”H(div)

Hence we have from (3.4) and (@) equation in (3.2), (2.18), (2.1), (3.3) that
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- 1, ,di
||, |[<C sup @,,divy,)

v, €V,v,#0 ” \f ”H(div)

(@ P+ B, + |, vit,drsy, v,)~bii, + [ cii,dr,divy,)

<C sup
v, €V, v, 20 v, ”H(div) (3.5)
t
(Ip, I+l ||+J. e, 1TV, agas
<C sup h h 0 h h NH(div)
v, €V, v, %0 v, ||H(div)

<C(d, I+ |1, Il dr)
Similarly to the proof of the Theorem 2.6, we have i, =0 and p, = 0. Hence the existence and
uniqueness of the solution of (3.1) has been demonstrated and (p,,#,) in (3.1) is well defined.
Now, let us study some properties of {p,,u,}. Let = p,—P,T =i, — Pu Noting that (2.5), then
(3.1) can be rewritten as
(@) (@E,7, V)~ (divv, 7, +bF + [ cEdr)+(BE + [ yEdr ,y,v,)

~(« p,(l—yh)vh)+(/3u+jo’yudr (I =7,)v,)+(b(Pu —u)+j0’c(Phu —u)dr.divv,)

~(BBu-w+[ y(Ru-uydr 7, v,), Vv, eV,.te,T], (3.6)
(b) (div€,w,)=0, Yw, e W,,1€(0,T],
(c) (©(0),w,)=0, Vw, eW,.

Lemma 3.1. Suppose that B,y € L*(0,T;(L"(Q))*) and u € L*(0,T;H"'(Q)). Then for any
¢ e(H'(Q)) and t €(0,T], we have
|(BBu—u),y,IL,0) IS Ch* [[ulllls I, (3.7)
(], 7(Bu—wydz 7,1, CFF | llullde s |l (3.8)
Proof. The proof of (3.7) see lemma 4.1 in [15]. To prove (3.8), it follows (2.9) and (2.24) that
(| y(Bu—wyde y,11,6) = (| y(Bu—u)dr ,y,1,6 =) |+ (] v(Bu—-udr )|

<C[IIBu—ullde 7,1, =g 1+C[ | Bu—ull, dz ll¢ < CF | llulldz Il

This completes the proof of (3.8).
Lemma 3.2. Suppose thata € L*(0,T;W () and B,y € L”(0,T;(W""(Q))*),

peLl”(0,T;(H' (Q))*),ueL”(0,T; H'(Q)). Then for any ¢ e (H'(Q))* and ¢ €(0,T], we
have
|+ Bu+ [ yude, (1 =y )T, &) < CR (o)), + |, + [ ], @] |, (3.9)
Proof. Lettingv =ap+ fu + JZ yudt , and v bea piecewise constant approximation to v,
from (2.6) and (2.24) we obtain that
|(@p+ Bu+ [ yude,(1 -y )T, O H (B IT, 6 7, T1,)|
A V=vI1,¢ -7, [T, O K =V IL, & =)+ v=v,¢ —7, 11,0
<[, e, = ol + e, + e, @) e

This completes the proof of the lemma.
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Lemma 3.3. Suppose that b,c € L*(0,T;W"*(Q)) and u € L”(0,T3 H'(Q)). Then for any w, € W,
and 7€ (0,T], we have
| (D(Bu~u)sw,)| <Ch* lulillw, Il , (3.10)
([} e~z w,) < CH [ 1l de [ w, 1. (3.11)
Proof. The proof of (3.10) see lemma 4.3 in [15]. To prove (3.11), it follows (2.9) that
(J.O c(Pu—u)dt,w,)= .[0 ((c=PBo)(Pu—u),w,)dr + .[0 (Pu—u,w,Pc)dt

<[lle=Bel,,, B,z < r* [ Nl dx w1
This completes the proof of (3.11).
Lemma 3.4. Let p € L°(0,T;(H'(Q))*) and u e L”(0,T;H'(Q)). Suppose that (&,7)
satisfies the system (3.6) and the Assumptions 1 holds. Then any ¢ € (0,7], we have
12 U< Ch[ QI E 11+ 11 divE Dz +Ch* [ Ll +IIp Il )dz. (3.12)
Proof. Given y € L*(Q), let¢ € H* (Q) " H, (Q) be the solution of the adjoint problem
(a) div(aV¢) =y, xeQ,.?
b))y =0, x € 0Q.
Then the following elliptic regularity holds
lolL,<Clly . (3.14)
By (2.4),(3.6) and (a &, aV¢) =—(divE, ¢), we have
@y v) = (1,div(aVe) = (7, div(ITh(aV$)))

= (@&, (1-7,11,)aV$) - (divE, ¢ - B$) - (b7 + [ ctde,dinI1,(aV$)))
+(BT+ [ yrde, 7,0, @V @)~ (o p+ Pu+ [ yude, (I -7, )11, (aV$))

— (divIL, (aV ), B(Pu—u) + jo c(Pu—u)dr)

(3.13)

+(B(Ru—u) + [ y(Bu—u)dz, 7,(I1,(aV )
=H +H,+H,+H,+H,+H,+H,.
Applying Lemma 2.5, Lemma 3.1-3.3 and (2.9), we obtain that
|H, | <CIEMU-7,11,)aVelI< CRIE NN,

| H,| <Chlldivé ||| §I,< ChlldivE [l I},

|Hy | <CAell+[ N7 lld) g1,

|H, | <C(izl+[ Izlldn) @L< Clizl+[ TN do) I,
|Hy | <CRAluly +Ipl+[ el do) 91

|Ho | <CRuly+[ Nuly do)liglh,

|H, | <CHlull+[ lluly do 1, -
It follows from the elliptic regularity (3.14) that
~ ~ Lo~ ~ t ~ t
|25 )| <CERAUEN+IAVEND + dizli+] liTlide) +AAlull+Iplh+[ lull dz D}

so we get
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||(ft)|| _ )

sup
yel Q=0 ||W||

<COUEN+IIAVEI +h*Alull+1p Ik +[ lluly dr) + (IF1+] 111 do)}

Since the following inequalities
I IH [ £dzli< €| Iz Il dr
and
[Elde <c| (] 1% I1ds)dr <[ (| I, I1ds)dz <C[ |I7, || d
hold, applying Gronwall’s Lemma, we obtain that
~ = .z t
17, I CRALE 1+ 1T dive 1)) +Ch*(lull +Ip +_f0|| ull dr),

£ 1< Chf (1€ 11 +11divE Dde +Ch> [ (lull +1Ip l)de

This completes the proof of the lemma.

(3.15)

Theorem 3.5. Let p € L”(0,T5(H'(Q))*) and divp, u,u, € L*(0,T; H'(Q)). Suppose that (p,,ii,)
satisfies (3.1) and the Assumptions 1 holds. Then for any ¢ € (0,T], the following error estimate

lu—ii, ll< Chllull, +, Qlull +1Ip 1+l divp ll)d7}

holds and for any ¢ € (0,7], the following error estimates

lp=p, 1< ChA{llu|l, +1I P} +f0(||u lh+1plh +Ildivpll)dz}

~ . t .
i, =, 1< Chillu, |l + e[l + 110 I} + I divp +_f0(||u I+l +[Idivp|l)dr}

hold. Moreover, the following superconvergence results hold, for the variable u
1, = Ba||< C* [l +lip I} +II divpll,)de |

| @@, = Bu), IS Ch*{lull, +1Ipl, +Idivp]| +jo(|| wlh +lply +ldivp|l)dz} .

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

Proof. Leté =p,—11, p, then from f =p,—p =0 +II, p—p that (3.6) can be written as follows

(a) (ao,y, Vh)—(divvh,ft)—(bf+J.;cfd7:,divvh)+(/3f+J.;)/fdf sV V)

= (@(p=T1, p),y, v, ) +(@ (I =7,) v, )+ (Bu+ [ yudr ,(I=7,)v,)
+(B(Pu—u)+ jo c(Pu—-u)dr,divy,)
—(B(Pu —u)+.|.;7/(Phu —u)dt,y,v,), Vv, eV, te(,T],
(b) (dive,w,)=(div(p-I1,p),w,)=0, Vw, e W,,t€(0,T],
(¢) 7(0)=0.
Taking w,=divé 1n () equation in (3.21), we obtain ||divé ||= 0, which implies
dive =div(p,-11,p)=0.
Taking v, =6 in (a) equation in (3.21), we get

(@6,7,6)=—(BE + [ yEdr ,7,6) +(@(p-T1,p)7,6)+ (@ p,(I -7,)5)

+(Bu+ [ yude (1 -7,)6) - (B(Bu—u)+ [ y(Bu—u)dt ,y,5)

Similarly to the proofs of Lemma 2.4 and Lemma 3.3, we have
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(3.21)

(3.22)

(3.23)



| (Bu+ [ yude,(1=7,)v,) I Ch(llull, + lull, do) ]| v, Il
From Lemma 2.2, we get
(@6,7,8)=C ISP
Combining (3.23) with (3.24) and (3.25), and using (2.22), (2.23), (2.6), (2.9), we have
GG C(||f||+follf||df)llyh5 I+ChllpILlly,S [ +Chri[plill& |l

+Chlull, +[ Il ) 16 [1+Chlull, +[ 1]l do) 17,6 I
it follows from Lemma 2.1 that
~ ~ Lo t
16 1P < CAE N+[ 1€ Il dr)+Chlp l, +Ilull, +[ I}, do)
(3.26) together with (2.6), (2.7) and (3.22), we obtain
IE IS 1|+ 1T1, p=p li< CAE 1+[ 1 1 d) + Chqlp Il +Ilull, +] Nl ),
I divE [|<]| divé ||+ || div(TT, p-p) [l< Ch || divp],.
Substituting (3.27) and (3.28) back into (3.12) yields
- t - T t T
IEI<Ch[ AIEN1+], I Nl ds)dz+Ch [ Qlull, + Il +] 1], ds)dz
t . t
+C* [ || divp lldz +Ch* [ (lull+IIpll,)dz
t - t .
< Ch| £ ldz+Ch* | (lull+IIp 1, +Idivp]|,)dz
Applying Grownwall’s Lemma we have

~ t .
1< CR [ Qlull,+1Ip 1, +IIdivp l})dz
This completes the proof of (3.19).

Combining (2.9) with (3.29) we obtain (3.16). Substituting (3.29) back into (3.27) yields

I Chrillull, +1Ipll +f0(||p Il +[lull, + 1l divp |, )d7}
Combining (3.28) with (3.30), we get (3.17). From (3.15) and (3.28), (3.30), we obtain

~ . t .
£ I Ch*{llull, +llp Il + Il divp ] +f0(llp [l +1lall, + 1 divpl)dz}.
This completes the proof of (3.20).

From (3.20) and (2.9) we get (3.18) directly. This completes the proof of the theorem.

The Error Estimates

(3.24)

(3.25)

(3.26)

(3.27)
(3.28)

(3.29)

(3.30)

In this section, we will use the properties of the mixed covolume elliptic projection {p,,i,} to

derive the optimal rate of convergence for the approximate velocity and pressure in the
H(div; Q)-norm and L*-norm.

In order to get our main results, we need the following lemmas.

Lemma 4.1 If ve L”(0,7;L"(Q2)). Then for any v, € V, ,u, e W, we have

| B(y, Visvi, )| < ClIvlollu, Wy, v, Il
Proof. By the definition of the bilinear B, we have

N\'
By, v,,vu :Z I vu,y, v,-n.ds+ vu,y, v, n.ds
V) Viovuy,) H( oK, K, aln Vi1 oK, N WVn Vi1, ds),

where n; stands for the unite outer normal direction of K :,_ =1 N

PR

For any i = 1, see Fig.1, K;l NK,, =A4 B 4;, with the mid-points P; of the side 4,45.
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Then 0K, NK,, = AB,+ B 4, . So that

J.@KaﬂKmlthh vV, |dS=J./TBl|”h7h Vg, |dS+J.Bl—A3|”th v, n, |ds,

where n,, is the unite outer normal vector to the edge 4,B,, n,, is the unite outer normal vector to
the edge B, 4,.

Let K be an element with e as an edge. It is well known (see [2]) that there exists a constant C such
1

1
that for any function we H'(K),|| w||,< C(h,? || w llo.x +h2 1wl «), where h is the length of the edge

e and C depends only on the minimum angle of K.
Noting that u,y, v,-n,, is a constant in A4, B, 4,, we get
1
J'Hl w,Y, Vi, |ds <Ch? |lw,y, v,-my, ”ﬁg Clluyy, vy loagsa,

Similarly, we get

J.ml Wy Vi My [ ds SClluy, viemy, o ag 4

so we have
J.OK*HDKH, lu,y, v,-my |ds <C(||lu,y, v,y ||O,AAIBIA3 +lu,y, vy, “0,AAIB|A3)
<Cllu, ”0*K71 17, v, ”()’Ka
Similarly, fori=2, - - -, N;, we derive that
o V73 Viem, 1 < Clla g 17 ¥l
and likewise fori=1, - - -, Ns, we have

Jos e Vs Va1 s < C e Ty 17 Vsl

Hence we obtain
N,
| By, Vi) | <ClIvlly, 2 Cllu, o 175 Vi lly e < CHIV ool My, v -
i=1 ! !
This completes the proof of the lemma.
Lemma 4.2 If b,c € L”(0,T;W"*(Q)) . Then for any u,eW,,v,eV, and t €(0,T], we have

| B(}/h Vha(b _Phb)uh +I0 (C_Phc)uhdf)l < Ch(” uh ” +I0 || uh || dT) || yh Vh ”
Proof. Taking v=»5 — P;b in Lemma 4.1, by the property of operator P;, we obtain
V1l =llb=Fblly..< Ch|bY < Ch[D]| <Ch

L7 (0,737 () —
which implies
| B(Vh Vh,(b_Phb)uh)l <Ch ” uh |||| yh Vh || .

Similarly, taking vu, = .[; (c—Pc)u,dr in Lemma 4.1, we have

t t t
| By Vi | (=B de) | S ChIlell,. oo | I 1dT 117, v, 1€ C Nl Nl de 117, v, 11

Using the triangle inequality now completes the proof.
Subtracting (2.2) from (2.30), and considering the mixed covolume elliptic projection introduced
in (3.1), we obtain the error equations

- 930



(@) (@, —P,)+ B, i)+ [ y(u,~i,)dz,y,v,)

—(div v, (), ~11,) + (B, —bi,)+ [ (o, —cit,dr)

+B(y, V(b= BbYu, + [ (c= Beyu,dr) =0, Vv, eV, te.T], 4.1)
) (u,, —u,,w,)+(div(p,—p,).w,)=0, vw, e W,,t€(0,T],
(C) (uh (0) - ﬁh (0)9 Wh) = 09 VWh € Wh .

Let u,~u=u,—u,+u,-u=n+n,p,—p=p,—p,+P,~P=¢& +& . Then (4.1) can be rewritten as
(@) (a&+ B+ yndr,y, v,) = (divy,,n,+(Bbn + [ (Bendr)

—(divv,,(Pb-Db)i,)+ jo (c—Pe)ii,dt)+B(y, v,,(b— Pbn + jo (c— P.o)ndr)

+B(y, v,»(b— BbYi, + [ (c— Bo)i,dr) =0, Vv, eV,.te,T], (4.2)
b) (M, w,)+(divé,w,)=-(@@,,w,), vw, e W,,te(0,T],
() n,00=0, (u,—u,) Vw,eW,.
Taking w, =div in equation (b) in (4.2), we get
[divE (i<, |1+ 1177, | (4.3)

Taking v, =¢ in equation (a) and w, =n, +(F,b)n in equation () in (4.2), we have
(aS,7,8)+(1,,m,)=—(Bn +f0 ymdr,y,5) +(diV§,(B,b—b)ﬁh)+f;(B,c—c)ﬁhdf)
+(AIVE, [ (Bemdr) - B(,&,(b - Bb + [ (c— Beyndr) (4.4)
— B(y,&x (b= BbYi, + [ (c = Royit,de) —(1,» (BN — (o1, +(Bb)).
Using (3.16), we obtain
[l |l <, =2 || Hlull < Ch(|| u |, +f0t(|| ull +Ipll +11divp [, )dz+{u]]

b

<C(lull +[ (luly +Ip 1+ divp]))de
which gives

- t - - t -
1(Bb=b)i, + [ (Be =Yy 1< Chl bl 1+ Il el N1, 1 d)

t . ’
<Ch(lull +[ (1l +1Ip Iy + 1l divp [, )de
Applying Lemma 4.2, we obtain

| B(7,&, (b= B+ [ (c=Bemdr) < Chlin |+ IIn 1 do) 17, 1,

| B, (b= BbYi, + [ (e~ Boyi,dr 1< Chlull, +[ Qluly +Ip 1} + 1 divp [)do) [17,£ .
It follows from Lemma 2.4 and (4.3), (4.4) that
GNP +lim, 1P
<(as,7,8)+M,»n,)

<CUnl+[ Inlldey +C([ lInlldey + Ch lull, +[,(lul +1pl} +Idivpll)de) +ClI, P

1 1
+Ch’ [ ldry +— “+—In, IF +ClinIf
inll+[linlldr) 20 11E I 5 In, 1P =€l

Furthermore, we get
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&1+,
<CUn I+ IIn dz+ 117, D+ Chin | +] IInllde)+Ch(lull, +[ dlull, +Ipl +I1divpl,)d)

~ t t .
<Clla I+CA+m| lin, lIde +Ch(lull +[ (lul, + I p | + [l divp]))dr)

~ t t .
<CIA, N+C| lim, llde +Ch(jul, +[ Qlull + 1} + Il divp ll)d7)
Applying Grownwall’s Lemma and (3.18), we get

NS T+, I < Chgllu, |l + Ny +lIp [, +[Idivp ], +IO(||u lh +pll +Ildivpll)dz} (4.5)

and
In 1< C lin, Ildz < Ch[ lu, I +Ilull, +lIpl, + || divpl|)dz (4.6)
Combining (4.3) with (3.18) and the estimate (4.5) of ||, ||, we obtain

Ve 11< Chillu, Il +lluelh + 1k +Ildivpll, +[ Qluly +pl + [l divpll)dz}

Using (4.5)-(4.7) and Theorem 3.5, we obtain the following main results.
Theorem 4.1 Let (p,u) and (p,,u,) be the solution of (2.2) and (2.30), respectively, and suppose

that p € L*(0,T;(H'(Q))*), divp, u, u, € L”(0,T; H'(Q)) and the Assumptions 1 holds. Then for any
t €]0,T], the following error estimate holds

=, || < Chillul} +f0(|| w lh +llull + 1l +|ldivp)dz}

and for any ¢ € (0,T], the following error estimates hold
. t .
o, =, | < Ch{llw, |l +1Tuell + 1P 1L+ divp |, +f0 (lull +1Ipl, + [l divpll)dr},

lp—p, 1< Ch{llu, I, + 11l Il + I divp I, +J.0(||u I +1plh +Ildivpll)dz}.
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