# Oscillation criteria for an advanced 2-D discrete system

Chunhua Yuan<sup>a\*</sup>, Liang Zhang<sup>b</sup> and Jian Liu<sup>c</sup>

School of Mathematical Science, University of Jinan, Jinan, 250022, China <sup>a</sup>yuanchunhua72@163.com, <sup>b</sup>522599239@qq.com, <sup>c</sup>liujian1990@163.com

Keywords: 2-D discrete system, Characteristic equation, Oscillation.

**Abstract.** This paper is concerned with oscillatory behavior of an advanced 2-D discrete system. Some necessary and sufficient conditions for the oscillation of all solutions of the advanced 2-D discrete system are established. Numerical examples are provided to demonstrate the main results of this paper.

### Introduction

2-D discrete systems arise in applications involving image processing, random walk problems, population dynamics with spatial migrations and finite difference schemes[1-4]. In recent years, lots of results for oscillatory behavior of 2-D discrete systems have been obtained (see [3-11] and the references therein).

In this paper, we are concerned with the oscillatory behavior of the advanced 2-D discrete system:

$$u_{m+1,n} + u_{m,n+1} - pu_{m,n} + qu_{m+k,n+l} = 0, \qquad n, m = 0, 1, 2, \dots,$$
(1)

where p, q are real numbers, k, l are nonnegative integers with  $k^2 + l^2 \neq 0$ . However, to the best of our knowledge, no research has been done on the oscillatory behavior of the advanced 2-D discrete system (1). In this paper, we establish some necessary and sufficient conditions for the oscillation of all solutions of the advanced 2-D discrete system (1).

Eq. 1 is said to be an advanced 2-D discrete system if k, l are nonnegative integers with  $k^2 + l^2 \neq 0$ . A solution of Eq. 1 is a real double sequence  $\{u_{m,n}\}$  which is defined for  $m \ge 0, n \ge 0$  and satisfies

Eq. 1 for  $m \ge 0$ ,  $n \ge 0$ .

A solution  $\{u_{m,n}\}$  of Eq. 1 is said to be eventually positive (or negative) if  $u_{m,n} > 0$  (or  $u_{m,n} < 0$ ) for large numbers  $m \ge 0$  and  $n \ge 0$ . It is said to be oscillatory if it is neither eventually positive nor eventually negative. Eq. 1 is called oscillatory if all of its nontrivial solutions are oscillatory.

# Preliminary

On basis of Corollary 2.9 in [4], we can easily obtain the following lemma, which is used in the proofs of the main results in the next section.

Lemma 1 The following statements are equivalent:

1) Every solution of Eq. 1 is oscillatory.

2) The characteristic equation  $\lambda + \mu - p + q\lambda^k \mu^l = 0$  of Eq. 1 has no positive roots.

# **Main Results**

Theorem 1. Assume that k > 0 and l > 0. Then every solution of Eq. 1 oscillates if and only if  $p \le 0$  and  $q \ge 0$ .

Proof. When k > 0 and l > 0, then the characteristic equation of Eq. 1 is

$$\phi(p, q, \lambda, \mu) = \lambda + \mu - p + q\lambda^k \mu^l = 0.$$
<sup>(2)</sup>

Sufficiency. Assume on the contrary that  $\{u_{i,j}\}\$  is an eventually positive solution of Eq. 1. In view of Eq. 1, we have

$$u_{i+1,j} + u_{i,j+1} = pu_{i,j} - qu_{i+k,j+1}.$$
(3)

(**a**)

Since  $p \le 0$  and  $q \ge 0$ , we can see that the left side of Eq. 3 is strictly greater than 0 and the right sight of Eq. 3 is less than or equal to 0. This is a contradiction.

Necessity. Assume on the contrary that  $p \le 0$  and  $q \ge 0$  do not hold. We only need to consider the following three cases.

Case 1) p > 0 and q < 0. Letting  $\mu = p + \delta$  in Eq. 2, we obtain

$$\phi(p,q,\lambda) = q(p+\delta)^l \lambda^k + \lambda + \delta = 0.$$
(4)

When k = 1, it follows from Eq. 4 that  $\lambda = -\delta/(1+q(p+\delta)^l)$ . Choosing  $\delta^* > \max\{0, \sqrt[l]{-1/q} - p\}$ , we have  $\lambda^* = -\delta^*/(1+q(p+\delta^*)^l) > 0$ . It follows from p > 0 and  $\delta^* > 0$  that  $\mu^* = p + \delta^* > 0$ . Hence,  $(\lambda^*, \mu^*)$  is a positive root of Eq. 2. When k > 1, choosing  $\delta = \delta^* > 0$  in Eq. 4, we have  $\lim_{\lambda \to 0^+} \phi(p, q, \lambda) = \delta^* > 0$  and  $\lim_{\lambda \to +\infty} \phi(p, q, \lambda) = -\infty$ . Since Eq. 4 is continuous on  $(0, +\infty)$ , there exists  $\lambda^* \in (0, +\infty)$  satisfying Eq. 4. Notice that  $\mu^* = p + \delta^* > 0$  for p > 0 and  $\delta^* > 0$ . Therefore,  $(\lambda^*, \mu^*)$  is a positive root of Eq. 2.

Case 2) p > 0 and  $q \ge 0$ . Letting  $\mu = \lambda$  in Eq. 2, we obtain

$$\phi(p,q,\lambda) = q\lambda^{k+l} + 2\lambda - p = 0.$$
(5)

From Eq. 5, we have  $\lim_{\lambda\to 0^+} \phi(p, q, \lambda) = -p < 0$ ,  $\lim_{\lambda\to +\infty} \phi(p, q, \lambda) = +\infty$ . Since Eq. 5 is continuous on  $(0, +\infty)$ , there exists  $\lambda^* \in (0, +\infty)$  satisfying Eq. 5. Notice that  $\mu^* = \lambda^* > 0$ . Therefore,  $(\lambda^*, \mu^*)$  is a positive root of Eq. 2.

Case 3)  $p \le 0$  and q < 0. Letting  $\mu = \lambda$  in Eq. 2, we have Eq. 5.

When p = 0, it follows from Eq. 5 that  $\lambda^* = k + l - \sqrt{-2/q} > 0$ . Notice that  $\mu^* = \lambda^* > 0$ . Hence,  $(\lambda^*, \mu^*)$  is a positive root of Eq. 2. When p < 0, in view of Eq. 5, we have  $\lim_{\lambda \to 0^+} \phi(p, q, \lambda) = -p > 0$  and  $\lim_{\lambda \to +\infty} \phi(p, q, \lambda) = -\infty$ . Since Eq. 5 is continuous on  $(0, +\infty)$ , there exists  $\lambda^* \in (0, +\infty)$  satisfying Eq. 5. Notice that  $\mu^* = \lambda^* > 0$ . Therefore,  $(\lambda^*, \mu^*)$  is a positive root of Eq. 2.

In all the cases above, Eq. 2 always has positive solutions. This contradicts Lemma 1. The proof is thus completed.

Theorem 2. Assume that k > 1 and l = 0 (or k = 0 and l > 1). Then every solution of Eq. 1 oscillates if and only if  $p \le 0$  and  $q \ge 0$ .

Proof. When k > 1 and l = 0, then the characteristic equation of Eq. 1 is

$$\phi(p,q,\lambda,\mu) = \lambda + \mu - p + q\lambda^{*} = 0.$$
(6)

Sufficiency. Suppose to the contrary that  $\{u_{i,j}\}\$  is an eventually positive solution of Eq. 1. Then from Eq. 1, we have

$$u_{i+1,j} + u_{i,j+1} = pu_{i,j} - qu_{i+k,j}.$$
<sup>(7)</sup>

Since  $p \le 0$  and  $q \ge 0$ , we can see that the left side of Eq. 7 is strictly greater than 0 and the right sight of Eq. 7 is less than or equal to 0. This is a contradiction.

Necessity. Suppose that every solution of Eq. 1 is oscillatory. From Lemma 1, one can obtain that Eq. 6 has no positive roots. Substituting  $\mu = c\lambda$  into Eq. 6, we have  $c = (-q\lambda^k - \lambda + p)/\lambda$ . It is obvious that Eq. 6 has no positive roots if and only if there does not exist  $c \in (0, +\infty)$  such that  $c = (-q\lambda^k - \lambda + p)/\lambda$  for any  $\lambda \in (0, +\infty)$ . That is, for any  $\lambda \in (0, +\infty)$ ,  $q\lambda^k + \lambda - p \ge 0$  always holds. Let  $f(\lambda) = q\lambda^k + \lambda - p$ . Then, we have  $f'(\lambda) = kq\lambda^{k-1} + 1$ .

i) When  $q \ge 0$ , notice that  $f'(\lambda) > 0$  for  $\lambda > 0$ . Therefore,  $f(\lambda)$  is strictly increasing on  $(0, +\infty)$ . For any  $\lambda \in (0, +\infty)$ , to ensure  $f(\lambda) \ge 0$ , it only needs to satisfy the relation  $f(\lambda) \ge f(0) = -p \ge 0$ , that is,  $p \le 0$ .

ii) When q < 0, since  $f(\lambda)$  is continuous on  $(0, +\infty)$  and  $\lim_{\lambda \to +\infty} f(\lambda) = -\infty$ , it is obvious that  $f(\lambda) \ge 0$  does not always hold for any  $\lambda \in (0, +\infty)$ .

Combining i) and ii) implies that necessity is true. The proof is thus completed. The proof for the case k = 0 and l > 1 is similar to the case for k > 1 and l = 0 and is not repeated here.

Theorem 3. Assume that k = 1 and l = 0 (or k = 0 and l = 1). Then every solution of Eq. l oscillates if and only if  $p \le 0$  and  $q \ge -1$ .

Proof. When k = 1 and l = 0, the characteristic equation of Eq.1 is

$$(1+q)\lambda + \mu - p = 0.$$
(8)

It is clear that Eq. 8 does not have any positive roots if and only if  $p \le 0$  and  $q \ge -1$ . Hence, Lemma 1 implies the statement of this theorem. This completes the proof. The proof for the case k = 0 and l = 1 is similar to the case for k = 1 and l = 0 and is not repeated here.

#### **Illustrative examples**

Example 1. Consider the advanced 2-D discrete system

$$u_{m+1,n} + u_{m,n+1} + 1.05u_{m,n} + u_{m+1,n+1} = 0.$$
<sup>(9)</sup>

From Eq. 9, we have k = 1, l = 1, p = -1.05, q = 1. Since p = -1.05 < 0 and q = 1 > 0, by Theorem 1, every solution of Eq. 9 is oscillatory. The oscillatory behavior of Eq. 9 is demonstrated by Fig. 1. *Example 2. Consider the advanced 2-D discrete system* 

$$u_{m+1,n} + u_{m,n+1} + 0.6u_{m,n} + u_{m+2,n+1} = 0.$$
<sup>(10)</sup>

From Eq. 10, we have k = 2, l = 0, p = -0.6, q = 1. Since p = -0.6 < 0 and q = 1 > 0, by Theorem 2, every solution of Eq. 10 is oscillatory. The oscillatory behavior of Eq. 10 is demonstrated by Fig. 2. *Example 3. Consider the advanced 2-D discrete system* 

$$u_{m+1,n} + 1.02u_{m,n+1} + 0.1u_{m,n} = 0.$$
(11)

From Eq. 11, we have k = 0, l = 1, p = -0.1, 1+q = 1.02. Since p = -0.1 < 0 and 1+q = 1.02 > 0, in view of Theorem 3, every solution of Eq. 11 is oscillatory. The oscillatory behavior of Eq. 11 is demonstrated by Fig. 3.





Fig. 1 Oscillatory behavior of Eq. 9

Fig. 2 Oscillatory behavior of Eq. 10



Fig. 3 Oscillatory behavior of Eq. 11

### Conclusions

In this paper, we derived effective criteria to determine oscillations of an advanced 2-D discrete system. Oscillation criteria for advanced 2-D discrete systems are different from delay 2-D discrete systems. Numerical examples are given to illustrate the results presented in this paper.

### Acknowledgements

The research work was supported by Natural Science Foundation of Shandong Province under Grant No. ZR2014FL015 and Natural Science Foundation of Shandong Province under Grant No. ZR2014AP011.

# References

- [1] B.E. Shi, L.O. Chua: IEEE Trans. Circuits Syst. I vol. 39 (1992), p. 531
- [2] R.J. LeVeque: Numerical Methods for Conservation Laws (Birkhauser-Verlag, GER 1990).
- [3] S.S. Cheng: Partial Difference Equations, vol. 3 of Advances in Discrete Mathematics and Applications (Taylor & Francis, UK 2003).
- [4] B.G. Zhang, Y. Zhou: *Qualitative Analysis of Delay Partial Difference Equations* (Hindawi Publishing Corporation, USA 2007).
- [5] B.G. Zhang, Q.J. Xing: J. Math. Anal. Appl. vol. 329 (2007), p. 567
- [6] B.G. Zhang, R.P. Agarwal: Comput. Math. Appl. vol. 45 (2003), p.1253
- [7] R.P. Agarwal, Y. Zhou: Math. Comput. Model. vol. 31 (2000), p. 17
- [8] B.G. Zhang, J.S. Yu: Comput. Math. Appl. Vol. 35 (1998), p.111
- [9] P.J.Y. Wong, R.P. Agarwal: Comput. Math. Appl. vol. 32 (1996), p. 57
- [10] B.G. Zhang, S.T. Liu: Discrete Dynamics in Nature and Society vol. 1 (1998), p. 265
- [11] J.F. Cheng, Y.M. Chu: Bull. Inst. Math. Acad. Sinica vol. 1 (2006), p. 507