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Abstract. This paper is concerned with oscillatory behavior of an advanced 2-D discrete system. 
Some necessary and sufficient conditions for the oscillation of all solutions of the advanced 2-D 
discrete system are established. Numerical examples are provided to demonstrate the main results of 
this paper. 

Introduction 
2-D discrete systems arise in applications involving image processing, random walk problems, 
population dynamics with spatial migrations and finite difference schemes[1-4]. In recent years, lots 
of results for oscillatory behavior of 2-D discrete systems have been obtained (see [3- 11] and the 
references therein).  

In this paper, we are concerned with the oscillatory behavior of the advanced 2-D discrete system:  
 

     1, , 1 , , ,0 , 0,1, 2, ,m n m n m n m k n lu u pu qu n m+ + + ++ − + = = …                                                            (1) 
 
where ,p q  are real numbers, ,k l  are nonnegative integers with 2 2 0k l+ ≠ . However, to the best of our 
knowledge, no research has been done on the oscillatory behavior of the advanced 2-D discrete 
system (1). In this paper, we establish some necessary and sufficient conditions for the oscillation of 
all solutions of the advanced 2-D discrete system (1). 

Eq. 1 is said to be an advanced 2-D discrete system if ,k l are nonnegative integers with 2 2 0k l+ ≠ . 
A solution of  Eq. 1 is a real double sequence ,{ }m nu  which is defined for 0 , 0m n≥ ≥  and satisfies 

Eq. 1 for 0 , 0m n≥ ≥ . 
A solution ,{ }m nu  of  Eq. 1 is said to be eventually positive (or negative) if , 0m nu >  (or , 0m nu < ) for 

large numbers 0m ≥  and 0n ≥ . It is said to be oscillatory if it is neither eventually positive nor 
eventually negative. Eq. 1 is called oscillatory if all of its nontrivial solutions are oscillatory.  

Preliminary 
On basis of Corollary 2.9 in [4], we can easily obtain the following lemma, which is used in the proofs 
of the main results in the next section. 

Lemma 1 The following statements are equivalent: 
1) Every solution of Eq. 1 is oscillatory. 
2) The characteristic equation 0k lp qλ µ λ µ+ − + =  of Eq. 1 has no positive roots. 

Main Results 
Theorem 1.  Assume that 0k >  and 0l > .  Then every solution of Eq. 1 oscillates if and only if 0p ≤  

and 0q ≥ .  
Proof . When 0k >  and 0l > , then the characteristic equation of Eq. 1 is 
 

( , , , )p qφ λ µ 0k lp qλ µ λ µ= + − + = .                                                                                                  (2) 
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Sufficiency. Assume on the contrary that ,{ }i ju  is an eventually positive solution of Eq. 1. In view 
of Eq. 1, we have 

 
1, , 1 , ,i j i j i j i k j lu u pu qu+ + + ++ = − .                                                                                                             (3) 

 
Since 0p ≤  and 0q ≥ , we can see that the left side of Eq. 3 is strictly greater than 0  and the right 

sight of Eq. 3 is less than or equal to 0 . This is a contradiction. 
Necessity. Assume on the contrary that 0p ≤  and 0q ≥  do not hold. We only need to consider the 

following three cases. 
Case 1) 0p >  and 0q < . Letting pµ δ= +  in Eq. 2, we obtain 
 

( , , ) ( ) 0l kp q q pφ λ δ λ λ δ= + + + = .                                                                                                     (4) 
 
When 1k = , it follows from Eq. 4 that (1 ( ) )lq pλ δ δ= − + + . Choosing * max{0, 1 }l q pδ > − − , we 

have * * *(1 ( ) ) 0lq pλ δ δ= − + + > . It follows from 0p > and * 0δ >  that * * 0pµ δ= + > . Hence, * *( , )λ µ  is 
a positive root of Eq. 2. When 1,k >  choosing * 0δ δ= > in Eq. 4, we have *

0
lim ( , , ) 0p q

λ
φ λ δ+→

= >  and  
lim ( , , )p qλ φ λ→+∞ = −∞ . Since Eq. 4 is continuous on (0, )+ ∞ , there exists * (0, )λ ∈ + ∞  satisfying Eq. 4. 
Notice that * * 0pµ δ= + >  for 0p > and * 0δ > . Therefore, * *( , )λ µ  is a positive root of Eq. 2. 

Case 2) 0p >  and 0q ≥ .  Letting µ λ=  in Eq. 2, we obtain 
 

     ( , , ) 2 0k lp q q pφ λ λ λ+= + − = .                                                                                                            (5) 
 
From Eq. 5, we have 

0
lim ( , , ) 0p q p

λ
φ λ+→

= − < , lim ( , , )p qλ φ λ→+∞ = +∞ . Since Eq. 5 is continuous 

on (0, )+ ∞ , there exists * (0, )λ ∈ + ∞  satisfying Eq. 5. Notice that * * 0µ λ= > . Therefore, * *( , )λ µ  is a 
positive root of Eq. 2. 

Case 3) 0p ≤  and 0q < .  Letting µ λ=  in Eq. 2, we have Eq. 5. 

 When 0p = , it follows from Eq. 5 that * 1 2 0k l qλ + −= − > . Notice that * * 0µ λ= > . Hence, 
* *( , )λ µ  is a positive root of Eq. 2. When 0p < , in view of Eq. 5, we have 

0
lim ( , , ) 0p q p

λ
φ λ+→

= − >  and 
lim ( , , )p qλ φ λ→+∞ = −∞ . Since Eq. 5 is continuous on (0, )+ ∞ , there exists * (0, )λ ∈ + ∞  satisfying Eq. 5. 
Notice that * * 0µ λ= > . Therefore, * *( , )λ µ  is a positive root of Eq. 2. 

In all the cases above, Eq. 2 always has positive solutions. This contradicts Lemma 1. The proof is 
thus completed. 

Theorem 2.  Assume that 1k >  and 0l =  (or 0k =  and 1l > ). Then every solution of Eq. 1 oscillates 
if and only if 0p ≤  and 0q ≥ . 

Proof.  When 1k >  and 0l = , then the characteristic equation of Eq. 1 is 
 

     ( , , , )p qφ λ µ 0kp qλ µ λ= + − + = .                                                                                                     (6) 
 
Sufficiency. Suppose to the contrary that ,{ }i ju  is an eventually positive solution of Eq. 1. Then 

from Eq. 1, we have 
 

     1, , 1 , ,i j i j i j i k ju u pu qu+ + ++ = − .                                                                                                                (7) 
                                                                                                          

Since 0p ≤  and 0q ≥ , we can see that the left side of Eq. 7 is strictly greater than 0  and the right sight 
of Eq. 7 is less than or equal to 0 . This is a contradiction. 
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Necessity. Suppose that every solution of Eq. 1 is oscillatory. From Lemma 1, one can obtain that 
Eq. 6 has no positive roots. Substituting cµ λ=  into Eq. 6, we have ( )kc q pλ λ λ= − − + . It is obvious 
that Eq. 6 has no positive roots if and only if there does not exist (0, )c ∈ + ∞  such that 

( )kc q pλ λ λ= − − +  for any (0, )λ ∈ + ∞ . That is, for any (0, )λ ∈ + ∞ , 0kq pλ λ+ − ≥  always holds. Let  
( ) kf q pλ λ λ= + − . Then, we have 1( ) 1kf kqλ λ −′ = + . 
i) When 0q ≥ , notice that ( ) 0f λ′ >  for 0λ > . Therefore, ( )f λ  is strictly increasing on (0, )+ ∞ . For 

any (0, )λ ∈ + ∞ , to ensure ( ) 0f λ ≥ ,  it only needs to satisfy the relation ( ) (0) 0f f pλ ≥ = − ≥ ,  that is, 
0p ≤ . 

ii) When 0q < , since ( )f λ  is continuous on (0, )+ ∞  and lim ( )fλ λ→+∞ = −∞ , it is obvious that 
( ) 0f λ ≥  does not always hold for any (0, )λ ∈ + ∞ . 
Combining i) and ii) implies that necessity is true. The proof is thus completed. The proof for the 

case 0k =  and 1l >  is similar to the case for 1k >  and 0l =  and is not repeated here. 
Theorem 3. Assume that 1k =  and 0l =  (or 0k =  and 1l = ). Then every solution of  Eq. 1 oscillates 

if and only if 0p ≤  and 1q ≥ − . 
Proof.  When 1k =  and 0l = , the characteristic equation of  Eq.1 is 
 
(1 ) 0q pλ µ+ + − = .                                                                                                                          (8) 
 
It is clear that Eq. 8 does not have any positive roots if and only if 0p ≤  and 1q ≥ − . Hence, Lemma 

1 implies the statement of this theorem. This completes the proof. The proof for the case 0k =  and 
1l =  is similar to the case for 1k =  and 0l =  and is not repeated here.  

Illustrative examples  
Example 1.  Consider the advanced 2-D discrete system 
 

     1, , 1 , 1, 11.05 0m n m n m n m nu u u u+ + + ++ + + = .                                                                                                    (9) 
 
From Eq. 9, we have 1, 1, 1.05, 1.k l p q= = = − =  Since 1.05 0p = − <  and 1 0q = > , by Theorem 1, 

every solution of Eq. 9 is oscillatory. The oscillatory behavior of Eq. 9 is demonstrated by Fig. 1. 
 Example 2.  Consider the advanced 2-D discrete system 
 

     1, , 1 , 2, 10.6 0m n m n m n m nu u u u+ + + ++ + + = .                                                                                                   (10) 
 
From Eq. 10, we have 2, 0, 0.6, 1k l p q= = = − = . Since 0.6 0p = − <  and 1 0q = > , by Theorem 2, 

every solution of Eq. 10 is oscillatory. The oscillatory behavior of Eq. 10 is demonstrated by Fig. 2. 
    Example 3.  Consider the advanced 2-D discrete system 

 
     1, , 1 ,1.02 0.1 0m n m n m nu u u+ ++ + = .                                                                                                          (11)  

 
From Eq. 11, we have 0, 1, 0.1,1 1.02k l p q= = = − + = . Since 0.1 0p = − < and 1 1.02 0q+ = > , in view of 

Theorem 3, every solution of Eq. 11 is oscillatory. The oscillatory behavior of Eq. 11 is demonstrated 
by Fig. 3.        
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Fig. 1 Oscillatory behavior of  Eq. 9                  Fig. 2 Oscillatory behavior of Eq. 10  

 
Fig. 3 Oscillatory behavior of Eq. 11 

Conclusions 
In this paper, we derived effective criteria to determine oscillations of an advanced 2-D discrete 
system. Oscillation criteria for advanced 2-D discrete systems are different from delay 2-D discrete 
systems. Numerical examples are given to illustrate the results presented in this paper. 
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