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Abstract. Mechanical engineering is the profession in which knowledge of  the mathematical and 
natural sciences. The concept for matrix Fourier multipliers concerning bivariate tight multi-wavelet 
frames is introduced in this paper. Based on matrix theory, a sufficient and necessary condition for a 
matrix–valued function, which becomes matrix Fourier multipliers for bivariate tight multi-wavelet 
frames is provided. The existence of bivariate Gabor frames with compact support is discussed. 
Sufficient conditions for irregular bivariate Gabor system to be frames are presented by means of 
frame multiresolution analysis and paraunitary vector filter bank theory.  

Introduction and fundamentals 

The frame theory plays an important role in the modern time-frequency analysis.It has been de 
-veloped very fast over the last twenty years, especially in the context of wavelets and Gabor syste- 
ms. In her celebrated paper[1].  Mechanical engineering is the second largest and one of the oldest 
disciplines; broadest of all engineering disciplines. Mechanical engineers apply the principles of 
mechanics and energy to the design of machines and devices: Energy and Motion. Overall foundat- 
ion: mathema –tics physics, chemistry, biology, analysis skills, communication skills, computation 
skills.To study some deep problems in nonharmonic Fourier series, Duffin and Schaeffer[2] introdu 
-ce the notion of frames for a separable Hilbert space in 1952.  Basically, Duffin and Schaeffer abs 
-tracted the fundam -ental notion of Gabor for studying signal processing [3]. These ideas did not se 
-em to generate much general interest outside of nonharmonic Fourier series however (see Young's 
[4]) until the landmark paper of Daubechies, Grossmann, and Meyer [5] in 1986. After this ground 
breaking work, the theory of frames began to be more widely studied both in theory and in applicat 
-ons [6-8], such as signal processing, image processing, data compression and sampling theory. The 
notion of frame multiresolution analysis (FMRA) as described by [6] generalizes the notion of multi 
-resolution analysis (MRA) by allowing non-ex act affine frames. However, subspaccs at different 
resolutions in a FMRA are still generated by a fra -me formed by translares and dilates of a single 
biv-ariate function. Inspired by [5] and [7], we intro -duce the norion of a generalized bivariate 
multiresolution structure (GBMS) of 22 ( )RL  geneated by several functions of integer translates 

22 ( )RL . We demonstrate that the generalized bivariate multire solution structure has a pyramid 
decom position scheme and obiain a frame-like decomposition based on such a GBMS. It also lead 
to new constructions of affine of 22 ( )RL . Since the majority of informa tion is multidimensional 
information, many researchers interest themselves in the investigation  into bivariate wavelet 
theory. The classical method for constructing multi-variate wavelets is that separa-ble bivariate 
wavelets may be obtained by means of the tensor product of some univariate wavelet frames. It is 
significant to investigate nonseparable multivariate wavelet frames.  
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The concept for matrix Fourier multipliers concern-ing bivariate tight multi-wavelet frames is 
introduced in this paper. Based on matrix theory, a sufficient and necessary condition for a matrix 
–valued function, which becomes matrix Fourier multipliers for bivariate tight multi-wavelet frames 
is provided. Lots of constructive examples are also presented. 
   Let W  be a separable Hilbert space and Λ  is an index set. We recall that a sequence 
{ : }v v Z∈D  W⊆ is a frame for H if there exist positive real numbers B , C such that 

,W∀ ∈h  
22 2, v

v
B C

∈Λ

≤ ≤∑h h D h                         (1) 

A sequence { }:v v Z W∈ ⊆D  is a Bessel sequence if (only) the upper inequality of ( )1  holds. If 
only for all W∈ Λ ⊂h , the upper inequality of ( )1  holds, the sequence { }v W⊆D  is a Bessel 
sequence with respect to (w.r.t.) Λ . If { }vf  is a frame, there exists a dual frame { }*

vf  such that 

W∀ϒ ∈ , * *, ,v v v v
v v

f f f f
∈Λ ∈Λ

ϒ = ϒ = ϒ∑ ∑ .                      (2) 

To state our results, the Fourier transform of an function ( )1 2( )f x L R∈ is defined by  

( ) ( ) ( )2

2 2, ,ix

R
Ff f f x e dx Rπ ωω ω ω

∧
−= = ∈∫                     (3) 

which, as usual, can be naturally extended to functions in 2 2( )L R . For a sequence { ( )}c c c= ∈ 
2 ( )zl , we define its discrete-time Fourier transform as the function in 2 2(0,1)L  by  

                 2
2( ) ( ) ( ) ix

v Z
Fc C c v e dxπ ωω ω −

∈
= = ∑ ，                       (4) 

For 0s > we denote by 2( )sH R   the Sobolev space of all binary functions 2( ) ( )sx H Rh ∈  such that  
$ 2| ( ) |(1 || || ) . 

n

s

R
h dγ γ γ+ < +∞∫  

A system ,{ } { } ( , )m n na mbg T E g m n Z= ∈  is a Gabor frame or Weyl-Heisenberg frame for 2 ( )L R , 
if there exist two constants , 0A B > , where ,a b R+∈ are constants such that  

22 2
,

,
, m n

m n Z
A g B

∈

≤ ≤∑h h h   

holds for all 2 ( )L R∀ ∈h  which is a square integrable measur. For a Gabor frame ,{ }m ng the 
analysis mapping (also called Gabor transform) gU , given by  

, ,: { , }g m n m nU f f g→ < >  , 2 ( )f L R∈∀  

and its adjoint, the synthesis mapping (also called Gabor expansion) gU ∗ , given by  

,

2
, , , ,:{ } , { } ( )

m n
g m n m n m n m nU c c g c Z∗ → ∀ ∈∑ l  

are bounded linear operators. The Gabor frame operator gS is defined by g g gS U U∗= . Explicitly,  

,
2, , ( ), ,

m n
g m n m n L RS f f g g f→ < > ∀ ∈∑  

If ,{ }m ng  forms a Gabor frame for 2 ( )L R , then 2 ( )L Rf∀ ∈  can be written as  

, ,
, , , ,, , ,

m n m n
m n m n m n m nf f g h f h g= < > = < >∑ ∑                   (5) 

where ,m nh are the elements of the dual frame, given by 1
, ,m n m nh S g−= . Equation (5) provides a con- 

-structive answer how to recover ( )f x from its Gabor transform , , Z{ , }m n m nf g ∈< > for given analysis 
window ( )g x  and how to compute the coefficients in the series expansion , ,, m n m nm n Z

f C g
∈

= ∑ for 
given atom ( )g x . The key is the cor-responding dual frame , ,{ , }m n m nf g< > . A detailed analysis of 
Gabor frames brings forward some features that are basic for a further understanding of Gabor an- 
alysis. Most of these features are not shared by other frames such as wavelet frames.  
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Characterization of generalized multiresolution structure  

To characterize such a GMS, we first introduce the concept of an pseudoframes and tight frames.  
Definition 1. Let 2{ , }vaT f v Z∈  and ° 2{ , }vaT f v Z∈  be two sequences in space 2 2( )L R . Let Ω  
be a closed subspace of space 2 2( )L R . We say 2{ , }vaT f v Z∈  forms an affine pseudoframe for 
Ω  with respect to ° 2{ , }vaT f v Z∈  if  

∀Γ ∈Ω , ( ) ° ( )2 , va vav Z
x T f T f x

∈
Γ = Γ∑                            (6) 

It is important to note that f  and °f need not be contained in Ω . Example 2 is such case. Co- 
nsequently,the positions of vaT f  and °

vaT f  are not generally commutable[ ]5 , i.e.,  
°

2( ) , ( )va vav Z
x T f T f x

∈
∀ Γ ∈Ω Γ =∑， °

2 , ( ) ( )va vav Z
T f T f x x

∈
Γ = Γ∑ .          (7) 

Define an analysis operator ( )2 2:K ZΩ → l by  
( )x∀Γ ∈Ω , { }, vaK T fΓ = Γ ,                          (8) 

and define another operator ( )2:L Z H→l  such that 
2 2{ ( )} ( )c c k Z∀ = ∈

r l . °
2 ( ) vav Z

Lc c v T f
∈

= ∑ .                   (9) 

Theorem 1[5]. Let { } 2
2 2( )( )va v Z L RT f x

∈
⊂  be a Bessel sequence w.r.t. the subspace 2 2( )L RΩ ⊂ , 

and °
2{ ( )}va v Z

T f x
∈

 is a Bessel sequence in 2 ( )L R . Let K  be defined by ( )8 , and L  be defined 
by ( )9 . Assume P  is a projection from 2 ( )L R  onto Ω . Then 2{ ( )}v v Z

T f x
∈

is an affine pseudo 
-frame for the subspace Ω  with respect to °{ ( )}v v ZT f x ∈  if and only if 

KLP P= .                                          (10) 
Definition 2. We say that a Generalized multiresolution structure (GMS) °{ , ( ), ( )}nV f x f x of the 
space 2 2( )L R  is a sequence of closed linear subspaces { }n n ZV

∈
of 2 2( )L R  and  two elements 

( )f x , ° 2 2( ) ( )x L Rf ∈ such that (i) 1,n nV V +⊂  2n Z∈ ;  (ii) { }0nn Z
V

∈
=∩ ; nn Z

V
∈∪ is dense in 

2 2( )L R ; (iii) ( ) ng x V∈  if and only if 1(4 ) ng x V +∈  2n Z∀ ∈  implies ( ) 0vaT g x V∈ , for any 2v Z∈ ; 
(v){ }2,vaT f v Z∈  forms an affine pseudoframe for 0V  with respect to °

2{ }va v Z
T f

∈
. 

Proposition 1[5]. Let { }vaT f  be an affine pseudoframe for 0V w. r. t. °{ }vaT f . Define nV  by 
-

2 0( ) ( ){ : (4 ) }n
n x L RV f f x V≡ ∈ ∈ ， n Z∈ ,                          (11) 

Then, the sequence ,{ }n va v Zf ∈ is an affine pseudoframe for the subspace nV with respect to °
,{ }v Zn vaf ∈ . 

Theorem 2. Let ( )f x , °
2 ( )( ) L Rf x ∈  have the properties specified in Proposition 1 such that the co 

ndition ( )11  is satisfied. Assume that nV  is defined by ( )11 . Then he sequence °{ , , }nV f f  forms 
a generalized multiresolution structure. 

Proof. We need to prove four axioms in Definition 2. The inclusion 1n nV V +⊆ follows from the fact 

that nV defined by (11) is equivalent to
4nPW

Λ
, and 4PW PWΛ Λ⊂ . Condition (b) is satisfied .Beca- 

-use the set of all band-limited signals is dense in ( )2L R . On the other hand, the intersection of all 
band-limited signals is the trivial function. Condition (c) is an immediate consequence of (11).For 

 (d),  if °
0( ) , ( ) , ( )va vav Z

x V x T f T f x
∈

Γ ∈ Γ = Γ∑ . By taking variable substitution,  we have for 

u Z∀ ∈ , ( ) ( ) ° ( ) ( ) ( ) ° ( ) ( ), ,
v Z v Z

x u f va f x va ua ua f va f x va
∈ ∈

Γ − = Γ ⋅ ⋅ − − − = Γ ⋅− ⋅− −∑ ∑ . 
Or, it is a fact ( )vaF T h has support in Ω  for arbitrary v Z∈ . Therefore, 0vaT f V∈ .  
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2

,

( ),
d

m
a n

m n Z

f x D H
∈

∑ 2
2 2

2

[(2 1)/2 ,(2 1)/2 ]
,

( ) ( )m m
nk b k b

m n Z k Z

a f x H a x dx
− +

∈ ∈
∑ ∑ ∫  

2
2 2

2

[ 1/2 ,1/2 ]
,

( / ) ( / )m m m
nb b

m n Z k Z

a f x k b H a x a k b dx
−

∈ ∈

= − −∑ ∑∫  

2
2 2

2

[ 1/2 ,1/2 ]
,

/ ! ( / ) ( / )m m m
nb b

m n Z k Z

a b f x k b H a x a k b dx
−

∈ ∈

≤ − −∑ ∑∫  

2
2 2[ 1/2 ,1/2 ]

, ,

/ ! ( / ) ( / ) ( / ) ( / )m m m m m
n nb b

m n Z k l Z

a b f x k b f x l b H a x a k b H a x a l b dx
−

∈ ∈

≤ − − − −∑ ∑∫

22 2
[( 1 2 ) 2 ,
(1 2 ) 2 ], ,

/ ! ( ) ( / / ) ( ) ( / / )m m m m m
k b n n

k bm n Z k l Z

da b f y f y k b l b H a y H a yy a k b a l b− −
−∈ ∈

+ + −= −∑∫∑

2
2 2,

/ ! ( ) ( / ) ( ) ( / )m m m m
n nR

m n Z l Z

a b f y f y l b H a y H a y a l b dy
∈ ∈

−= −∑∑ ∫  

2
2,

2 1 2

,

[/ ! ( ) ]( ) ( / )m m m m
nR n

m n l Z

a b f y H a y H a y a l b dy
∈

−≤ ∑ ∫  

Conclusion 

We characterize the pseudoframes of translates for the subspaces of 2 2L R( ).  The pyramid de 
composition scheme is derived based on such a GBMS. As a major new constribution the constr- 
uction of affine frames for 2 2L R( ) based on a GBMS is presented. 
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