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Abstract

Closure operators defined on various sets (set of all
classical fuzzy sets, set of all semi-cuts, set of all cuts
in a Q-set, etc.) are investigated and it is shown
how a closure operator defined on one set can be
extended to a closure operator defined on another
set.
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1. Introduction

In the fuzzy set theory and fuzzy logic, α-cuts of
fuzzy sets are used to decompose a fuzzy set into
a weighted combination of classical sets using the
resolution identity principle. The principle is im-
portant in fuzzy set theory because it establishes
a bridge between fuzzy sets and crisp sets. Hence,
it has been used as the foundation for generaliz-
ing concepts and methods based on crisp sets into
those based on fuzzy sets (see e.g. [19]). It means
that any classical fuzzy set in a set A (i.e. a map
from A with values in the unit interval [0, 1]) can
be alternatively expressed as a system of crisp sub-
sets. In fact, recall that a nested system of α-cuts
in A is a system (Cα)α of subsets of A such that
Cα ⊆ Cβ if α ≥ β and the set {α ∈ [0, 1] : a ∈ Cα}
has the greatest element for any a ∈ A. Then for
any nested system of α-cuts C = (Cα)α, a fuzzy
set µC : A → [0, 1] can be constructed such that
µC(x) =

∨
{β:x∈Cβ} β and, conversely, for any fuzzy

set µ in A, a nested system of α-cuts is defined by
Cα = {x ∈ A : µ(x) ≥ α}. Between nested systems
of α-cuts in A and fuzzy sets in A there are some in-
teresting relationships, and from some point of view
an investigation of fuzzy sets can be substituted by
an investigation of nested systems of α-cuts (see e.g.
[1, 2]).
In the fuzzy set theory and its applications some

other generalizations of classical fuzzy sets are fre-
quently used. Firstly, instead of the unit inter-
val [0, 1] some other structures are used. Most of
them are some versions of complete lattices with
some additional properties. One of the most fre-
quently used structure is a complete residuated lat-
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tice, see e.g. [20] (in some terminology unital and
commutative quantale, see [21]), i.e. a structure
Q = (L,∧,∨,⊗,→, 0, 1) such that (L,∧,∨) is a
complete lattice, (L,⊗, 1) is a commutative monoid
with operation ⊗ isotone in both arguments and →
is a binary operation which is residuated with re-
spect to ⊗, i.e.

α⊗ β ≤ γ iff α ≤ β → γ.

A well known example is the Łukasiewicz algebra
Ł = ([0, 1],∨,∧,⊗,→Ł, 0, 1), where

a⊗ b = 0 ∨ (a+ b− 1)
a→Ł b = 1 ∧ (1− a+ b).

Further, classical fuzzy sets (or fuzzy sets with val-
ues in residuated lattice) are defined in sets. But
any set A can be considered as a couple (A,=),
where = is a standard equality relation defined in
A. It is then natural to consider instead of the strict
equality relation =, some more "fuzzy" equality re-
lation defined in A which is called similarity rela-
tion. Hence, instead of a classical set A and a fuzzy
set s : A → [0, 1], we can use a set with similar-
ity relation (A, δ) (called a Q-set) and a "fuzzy set"
s : (A, δ)→ Q.

Our principal goal is to establish some relation-
ships between "fuzzy sets" in Q-sets on one side and
(nested) systems of α-cuts on the other side. More-
over, we will work in a category theory settings,
namely we will investigate such relationships not
only for sets with similarity relations, but also for
morphisms between Q-sets in corresponding cate-
gories. Categories we will be mostly working with
are some analogies of the classical category Set of
sets with maps as morphisms.

In our previous papers [14, 16, 17], we introduced
a notion of a fuzzy set in sets with similarity rela-
tion (A, δ) (the so called Q-sets), where values of
a similarity relation δ : A × A → Q are from the
residuated lattice Q. The notion of an Q-set was
introduced by Fourmann and Scott in [9] for a Heyt-
ing algebra Q and we will use it also for a complete
residuated lattices. Q-sets then represent objects in
various categories K with differently defined mor-
phisms. Among these categories we are interested
in two special categories: the category Set(Q) with
morphisms (A, δ)→ (B, γ) defined as special maps
A → B and the category SetR(Q) with morphisms
defined as special relations A×B → Q. A notion of
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a fuzzy set in (A, δ) then depends on a category K,
i.e. f is a fuzzy set in an Q-set (A, δ) in a category
K (shortly, f ⊂∼K

(A, δ)), if f : (A, δ) → (Q,↔)
is a morphism in K, where ↔ is the biresiduation
operation in Q (= special similarity relation in Q).
This formal extension of classical fuzzy sets enables
us to develop the fuzzy set theory in any category
of Q-sets, with a lot of properties similar to those
of classical fuzzy sets. Although such definition of
a fuzzy set in a category K is new, for some con-
crete examples of a category K it represents a well
known object, in fact. For example, in the category
Set(Q) a fuzzy set in a Q-set(A, δ) is any exten-
sional map s : A → Q, i.e. a map which is well
known and frequently used by various authors (see,
e.g., [5, 10, 11]).
In papers [13, 15], we proved that fuzzy sets in

the categories Set(Q) and SetR(Q) can be repre-
sented by some cut systems. These results extend
in a natural way the above mentioned equivalence
between classical fuzzy sets and α-cuts. Namely, we
proved that any fuzzy set f ⊂∼Set(Q)

(A, δ) can be
represented by the so called f-cut C = (Cα)α∈Q,
where Cα are subsets of A with some special prop-
erties, and, any fuzzy set g ⊂∼SetR(Q)

(A, δ) can be
analogously represented by an f-cut D = (Dα)α∈Q,
where Dα are subsets of A×Q also with some spe-
cial properties. If instead of a similarity relation δ
we will consider standard equality relation =, these
general theorems represent above mentioned rela-
tions between classical fuzzy sets and α-cuts.

A relationship between fuzzy sets and f-cuts is
even more closer. We show that fuzzy sets struc-
tures in sets with similarity relations can be repre-
sented by a functor FK : K → Set from a corre-
sponding category K = Set(Q),SetR(Q) of Q-sets
into the category of sets and analogously, f-cuts can
be represented by a functor CK : K→ Set. A prin-
cipal relationship between fuzzy sets and f-cuts in
Q-sets can be then expressed as a natural isomor-
phism between the functors FK and CK.
In the paper we want to investigate further prop-

erties of fuzzy sets and f-cuts in corresponding cate-
gories. As can be expected, not every map s : A→
Q is a fuzzy set and not every system of subsets
(Cα)α of A is an f-cut in a Q-set(A, δ) (in the cate-
gory Set(Q)). It is then natural to ask the following
question: Is it possible to find some completion pro-
cedure which extends any such map s or any system
(Cα)α onto a fuzzy set or an f-cut in the category
Set(Q) or SetR(Q)?
In our previous papers [13, 15, 16] we proved that

the answer is positive. Namely, we showed that any
system C = (Cα)α of subsets of A or in A × Q,
respectively, can be extended onto an f-cut C in
an Q-set (A, δ) in the category Set(Q) or SetR(Q),
respectively. Moreover, we want to prove that this
completion C 7→ C is, in some sense, the best possi-
ble. To describe the effectiveness of a completion we

will use a category theory language. We will use a
notion of a reflective subcategory which represents a
universal construction how to enhance properties of
an object in the most effective way. We will present
theorems which state that categories of completions
C are reflective subcategories in categories of semi-
cuts C.

Finally we will be interested in closure operators
in structures based on sets or Q-sets. The notions
of a closure system and a closure operator are very
useful tools in several areas of classical mathemat-
ics. Let us mention classical closure operators in
topological spaces, closure operators which enable
to extend various mathematical structures to better
ones (e.g., metric space to a complete metric space,
lattice to a complete lattice, etc.), closure opera-
tors in various algebraic structures, e.g., topological
groups, etc. All these closure operators have a very
similar structure. In fact, if U is an universe for our
closure operator (e.g., classical sets, set of all metric
spaces, set of all lattices, etc.) with some ordering
≤ defined on U (e.g., a set inclusion relation ⊆),
then a closure operator could be defined as a map
c : U → U satisfying

1. x ≤ c(x)
2. c(c(x)) = c(x)
3. x ≤ y ⇒ c(x) ≤ c(y)

for every x ∈ U . This led several authors to investi-
gate the closure operators also in the framework of
fuzzy set theory. Recall the papers [3, 4, 5, 6, 7, 8],
where various results about closure operators de-
fined on an universe of classical fuzzy sets are pre-
sented. The aim of this paper is to investigate a
possibility to extend a closure operator defined on a
set of some structures defined on Q-sets to a closure
operator defined on another set of such structures.

2. Preliminary notations and basic results

To be more self-contained we will introduce sev-
eral notations which will be used in the paper, and
we also recall several results from previous papers
which can be useful for full understanding and no-
tation of our results. In the paper, Q denotes a
complete residuated lattice (Q,∧,∨,⊗,→, 0Q, 1Q).
Recall that a set with similarity relation (or Q-set)
is a couple (A, δ), where δ : A × A → Q is a map
such that

(a) (∀x ∈ A) δ(x, x) = 1,
(b) (∀x, y ∈ A) δ(x, y) = δ(y, x),
(c) (∀x, y, z ∈ A) δ(x, y)⊗ δ(y, z) ≤ δ(x, z) (gen-

eralized transitivity).

In the paper, we will use two principal categories
with Q-sets as objects and with differently defined
morphisms. A morphism f : (A, δ) → (B, γ) in the
first category Set(Q) is a map f : A→ B such that
γ(f(x), f(y)) ≥ δ(x, y) for all x, y ∈ A. The other
category SetR(Q) is an analogy of the category of
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sets with relations between sets as morphisms. Ob-
jects of the category SetR(Q) are the same as in the
category Set(Q) and morphisms f : (A, δ)→ (B, γ)
are maps f : A × B → Q (i.e. Q-valued relations)
such that

(a) (∀x, z ∈ A)(∀y ∈ B) δ(z, x) ⊗ f(x, y) ≤
f(z, y),

(b) (∀x ∈ A)(∀y, z ∈ B) f(x, y) ⊗ γ(y, z) ≤
f(x, z).

As we mentioned, a fuzzy set f in an Q-set (A, δ)
in a category K (shortly, f ⊂∼K (A, δ)) is a mor-
phism f : (A, δ)→ (Q,↔), where ↔ is the biresid-
uation operation in Q defined by α ↔ β = (α →
β) ∧ (β → α). Any classically defined fuzzy set X
in a set A with values in Q can be defined equiva-
lently by a system of level sets Xα, α ∈ Q, where
Xα = {a ∈ A : X(a) ≥ α}. Conversely, any
(nested) system (Yα)α of subsets of A such that
for any a ∈ A the set {α ∈ Q : a ∈ Yα} has
the greatest element, defines a fuzzy set Y such
that Y (a) =

∨
{β:a∈Yβ} β. In our previous papers

[13, 15], we proved that analogously any fuzzy set
in (A, δ) in the category Set(Q) or in the category
SetR(Q) can be defined equivalently by a system of
some special subsets of A or A × Q, respectively,
called f-cut, which is defined as follows:

Definition 2.1 Let (A, δ) be an Q-set. Then a sys-
tem C = (Cα)α of subsets of A is called an f-cut
in (A, δ) in the category Set(Q) if

(a) ∀a, b ∈ A, a ∈ Cα ⇒ b ∈ Cα⊗δ(a,b),
(b) ∀a ∈ A,∀α ∈ Q,

∨
{β:a∈Cβ} β ≥ α⇒ a ∈ Cα.

Definition 2.2 Let (A, δ) be an Q-set. Then a sys-
tem C = (Cα)α of subsets of A×Q is called an f-cut
in (A, δ) in the category SetR(Q) if

(a) Cα ⊆ A×Q, for any α ∈ Q,
(b) ∀a, b ∈ A, (a, β) ∈ Cα ⇒ (b, β) ∈ Cα⊗δ(a,b),
(c) ∀a ∈ A,∀γ ∈ Q,

∨
{β:(a,γ)∈Cβ} β ≥ α ⇒

(a, γ) ∈ Cα,
(d) ∀a ∈ A,∀α, γ ∈ Q, (a, α) ∈ Cβ ⇒ (a, γ) ∈

Cβ⊗(α↔γ).

In the paper [16], for any Q-set (A, δ) we in-
troduced the following extensional maps, where
FK(A, δ) is the set of all fuzzy sets in (A, δ), in the
category K.

̂: {s : s : A→ Q is a map} → FSet(Q)(A, δ),˜: {s : s : A×Q→ Q is a map} → FSetR(Q)(A, δ),

defined by the following lemma.

Lemma 2.1 Let (A, δ) be an Q-set and let s : A→
Q and g : A×Q→ Q be maps. Let the maps ŝ and

g̃ be defined by

ŝ(a) =
∨
x∈A

δ(a, x)⊗ s(x)

g̃(a, α) =
∨

(x,β)∈A×Q

g(x, β)⊗ δ(x, a)⊗ (α↔ β),

for every a ∈ A,α ∈ Q. Then ŝ ∈ FSet(Q)(A, δ) and
g̃ ∈ FSetR(Q)(A, δ).

Recall (see [13, 15]) that also any system of sub-
sets indexed by elements from Q can be extended
onto f-cut system. In fact, for any Q-set (A, δ) there
exist completion maps

cSet(Q),(A,δ) : {C : Cα ⊆ A} → CSet(Q)(A, δ),
cSetR(Q),(A,δ) : {D : Dα ⊆ A×Q} → CSetR(Q)(A, δ),

such that cSet(Q),(A,δ)(C) = C = (Cα)α and
cSetR(Q),(A,δ)(D) = D = (Dα)α, where

Cα = {a ∈ A :
∨

{(x,β):x∈Cβ}

β ⊗ δ(a, x) ≥ α},

for any (Cα)α, Cα ⊆ A,

Dα = {(a, β) ∈ A×Q :
∨

{(x,τ,ρ):(x,τ)∈Dρ}

ρ⊗

δ(a, x)⊗ (τ ↔ β) ≥ α}

for any (Dα)α, Dα ⊆ A×Q.
In what follows, we set ZSet(Q)(A) = {C : Cα ⊆

A} and ZSetR(Q)(A) = {D : Dα ⊆ A×Q}.

Example 2.1 Let δ be the classical identity re-
lation "=" on the set [0, 1] and let Q be the
Łukasiewicz algebra. Let a system C = (Cα)α be
defined by Cα = [0, α) ⊆ [0, 1]. Then it is clear that
C is not an f-cut in ([0, 1], δ) in the category Set(Q).
A simple computation shows that C = ([0, α])α.

In the next parts, for any category K =
Set(Q),SetR(Q), we will use the following nota-
tions.

CK(A, δ) = {C : C is an f-cut in (A, δ) in K}.

Principal properties of fuzzy sets and f-cuts in both
categories can be described by the following theo-
rems (see [15, 18]).

Theorem 2.1 Let f : (A, δ) → (B, γ) be a mor-
phism in a category K = Set(Q),SetR(Q).

1. FSet(Q) : Set(Q) → Set is a functor such that
for every s ∈ FSet(Q)(A, δ), b ∈ B, we have
FSet(Q)(f)(s)(b) =

∨
x∈A s(x)⊗ γ(f(x), b).

2. FSetR(Q) : SetR(Q) → Set is a functor such
that for every t ∈ FSetR(Q)(A, δ), b ∈ B,α ∈ Q,
we have FSetR(Q)(f)(t)(b, α) =

∨
x∈A t(x, α) ⊗

f(x, b).
3. CSet(Q) : Set(Q) → Set is a functor such that

for every C = (Cα)α ∈ CSet(Q)(A, δ), we have
CSet(Q)(f)(C) = (f(Cα))α.
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4. CSetR(Q) : SetR(Q) → Set is a functor such
that for every C = (Cα)α ∈ CSetR(Q)(A, δ), we
have CSetR(Q)(f)(C) = (Dα)α, where Dα =
{(b, β) ∈ B ×Q :

∨
{(a,τ):(a,β)∈Cτ} f(a, b)⊗ τ ≥

α}.

Theorem 2.2 For every category K =
Set(Q),SetR(Q) there exists a natural isomor-
phism

FK → CK.

3. Properties of completion maps

As we mentioned in previous Section, for every Q-
set (A, δ), there exist completion maps cK,(A,δ) :
ZK(A) → CK(A, δ). Elements in ZK(A) will be
called semi-cuts in (A, δ) in a corresponding cat-
egory K = Set(Q),SetR(Q), respectively. In this
Section we describe some properties of these maps,
which show that the completion maps are, in some
sense, the best possible. Firstly, by using these com-
pletion maps, we can define a lattice structure on
the set of all f-cuts CK(A, δ), for every category
K = Set(Q),SetR(Q).

Definition 3.1 Let (A, δ) be an Q-set.

1. Let Ci = (Ci,α)α be a semi-cut in (A, δ) in K,
for every i ∈ I. Then we set∨
i∈I

Ci = (
⋃
i∈I

Ci,α)α,
∧
i∈I

Ci = (
⋂
i∈I

Ci,α)α.

2. Let Di = (Di,α)α be an f-cut in (A, δ) in K,
for every i ∈ I. Then we set∨
i∈I

Di = (
⋃
i∈I

Di,α)α,
∧
i∈I

Di = (
⋂
i∈I

Di,α)α.

Proposition 3.1 Let (A, δ) be a Q-set. Then

1. (ZK(A),∨,∧) is a complete lattice,
2. (CK(A, δ),∨,∧) is a complete lattice.

Proposition 3.2 Let (A, δ) be a Q-set. Then the
completion map cK,(A,δ) : ZK(A) → CK(A, δ) is a
lattice homomorphism.

Using these lattice structures, the completion
map can be defined by the following proposition.

Proposition 3.3 Let (A, δ) be a Q-set and let C ∈
ZK(A, δ). Then

C =
∧
{D : D ∈ CK(A, δ),C ⊆ D}.

Analogously as the functor CK, we can define a
functor ZK : K → Set, i.e. for a morphism f :
(A, δ)→ (B, γ), we set

1. for every C ∈ ZSet(Q)(A), ZSet(Q)(f)(C) =
(f(Cα))α,

2. for every D ∈ ZSetR(Q)(A), ZSetR(Q)(f)(D) =
(f(Dα))α, where f(Dα) = {(b, β) ∈ B × Q :∨
{(a,τ):(a,β)∈Cτ} f(a, b)⊗ τ ≥ α}.

A principal property of a completion map can be
described by the following theorem.

Theorem 3.1 Let K be any of categories
Set(Q),SetR(Q) and let (A, δ) be a Q-set. Then
the completion map cK,(A,δ) is a component of a
natural transformation cK : ZK → CK, i.e., for
every morphism f : (A, δ) → (B, γ), the following
diagram commutes.

ZK(A)
cK,(A,δ)−−−−−→ CK(A, δ)

ZK(f)
y yCK(f)

ZK(B)
cK,(B,γ)−−−−−→ CK(B, γ).

Another principal results of this section are theo-
rems which state that the completion maps are, in
some sense, the most effective extensions. To de-
scribe those properties of completions we will use
a simple category theory language. Namely, we
will use the notion of a reflective subcategory which
represents a universal construction how to enhance
properties of an object in the most effective way (for
more details see, e.g., [12]). Recall that a full sub-
category V ↪→W of a category W is a full reflective
subcategory in W, if

1. there exists a functor G : W→ V,
2. for any object a of W there exists a morphism
ua : a→ G(a), called a reflection,

3. for any other object b of V and any other mor-
phism f : a → b there exists the unique mor-
phism f̂ : G(a) → b such that the diagram
commutes:

a
ua−−−−→ G(a)

f

y f̂

y
b b

In that case a subcategory V contains objects with
enhanced (or completed) properties (with respect to
objects of the category W) and from some point of
view it represents the most effective extension of ob-
jects from the original category W. Many classical
examples of well known extensions (or completions)
can be expressed as reflective subcategories. Re-
call a completion of a metric space, a completion
of a lattice to a complete lattice, a construction of
Abelian groups from noncommutative groups etc.
In all these examples full subcategories of objects
with these enriched properties are full reflective sub-
categories in categories of original structures.

We will start with definitions of two categories of
cut systems.

Definition 3.2 The objects of the category Cut
will be (A, δ,C), where (A, δ) is an Q-set and C is
an element from ZSet(Q)(A). Then f : (A, δ,C) →
(B, γ,D) is a morphism in Cut if
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(a) f : (A, δ) → (B, γ) is a morphism in the cate-
gory Set(Q),

(b) ZSet(Q)(f)(C) ⊆ D, i.e. f(Cα) ⊆ Dα for all
α ∈ Q.

Moreover, let Cutf be a full subcategory in Cut
with objects (A, δ,C) such that C is an f-cut in
(A, δ) in the category Set(Q).

Theorem 3.2 The subcategory Cutf ↪→ Cut
is a full reflective subcategory in the category
Cut, where the reflection is the completion map
cSet(Q),(A,δ).

An analogical investigation for the category
SetR(Q) is more complicated. We will start with
the following definition of CutR.

Definition 3.3 Objects of CutR will be (A, δ,C),
where (A, δ) is an Q-set and C is a semi-cut,
i.e. an element from ZSetR(Q)(A). Moreover, f :
(A, δ,C)→ (B, γ,D) is a morphism in CutR, if

1. f : (A, δ) → (B, γ) is a morphism in the cate-
gory SetR(Q) and

2. ZSetR(Q)(f)(C) ⊆ D, i.e. f(Cα) ⊆ Dα for all
α ∈ Q, where

f(Cα) :=

{(b, β) ∈ B ×Q :
∨

{(a,τ):(a,β)∈Cτ}

f(a, b)⊗ τ ≥ α}.

By CutR,f we denote the full subcategory of the
category CutR with objects (A, δ,C), where C is
an object from CSetR(Q)(A, δ), i.e. an f-cut.

Theorem 3.3 The subcategory CutR,f ↪→ CutR
is a full reflective subcategory in CutR, where the
reflection is the completion map cSetR(Q),(A,δ).

The proof of this theorem requires several techni-
cal lemmas, from which the most important is the
following lemma describing a continuous property of
morphisms in the category SetR(Q) with respect to
the closure operation represented by the completion
map.

Lemma 3.1 Let f : (A, δ)→ (B, γ) be a morphism
in the category SetR(Q) and let C ∈ CR(A). Then
we have,

f(C) ⊆ f(C).

4. Closure operators

Closure systems and closure operators play an im-
portant role in various mathematical structures,
such as topological spaces, lattices, various algebraic
structures. In papers [7, 8], fuzzy closure operators
and systems were studied as natural generalizations
of classical closure structures. In this section we
continue in developing fuzzy operator theory and
we extend the definition of a closure operator to
the set of all f-cuts.

Recall firstly some facts about representations of
fuzzy sets (in our category Set(Q)) by some versions
of α-cuts. Any classically defined fuzzy set X in a
set A with values in Q can be defined equivalently
by a system of cuts, defined by

Definition 4.1 Let A be a set. A cut in A is a
system (Cα)α∈Q such that

1. Cα ⊆ A, for every α ∈ Q,
2. if a ∈ A is such that

∨
{β:a∈Cβ} β ≥ α, then

a ∈ Cα.

By D(A) we denote the set of all cuts in a set A.
It is clear that for any A, there exists a bijection
between the set F (A) of all classical fuzzy sets in a
set A and D(A), such that s ∈ F (A) corresponds
to a cut (sα)α, where sα = {a ∈ A : s(a) ≥ α} and,
conversely, (Cα)α ∈ D(A) corresponds to a map
s ∈ F (A) such that s(a) =

∨
{β:a∈Cβ} β.

Let us consider the following universes.

1. The set 2A of all subsets of a set A,
2. the set D(A) of all cuts in a set A,
3. the set F (A) of all classical fuzzy sets in a set
A, i.e., maps A→ Q,

4. the set CSet(Q)(A, δ) of all f-cuts in a Q-set
(A, δ) in the category Set(Q),

5. the set FSet(Q)(A, δ) of all fuzzy sets in a Q-set
(A, δ) in the category Set(Q).

We will define a closure operator on the above
mentioned universes. Let A be a set, δ be a
similarity relation on A and let (W,≤) be any
of the ordered sets (2A,⊆), (D(A),≤), (F (A),≤
), (FSet(Q)(A, δ),≤), (CSet(Q)(A, δ),≤), where the
order relations ≤ are defined point-wise. Then a
closure operator on an universe (W,≤) is a map
c : W →W such that

1. x ≤ c(x), for every x ∈W ,
2. c(c(x)) = x, for every x ∈W ,
3. x ≤ y ⇒ c(x) ≤ c(y), for every x, y ∈W .

By U(W ) we denote the set of all closure operators
on the universe W .
We show several simple examples of closure oper-

ators.

Example 4.1 Let (A, δ) be a Q-set.
Let FR(A) = {s|s : A × Q → Q},
C(A) = {C|C is a semi-cut in A}, CR(A) =
{C|C is a semi-cut in A×Q}.

1. The extensional map ̂ : F (A) →
FSet(Q)(A, δ) ⊆ F (A) is a closure opera-
tor.

2. The extensional map ˜ : FR(A) →
FSetR(Q)(A, δ) ⊆ FR(A) is a closure oper-
ator.

3. The completion map C(A) → CSet(Q)(A, δ) ⊆
C(A) is a closure map.

4. The completion map CR(A) →
CSetR(Q)(A, δ) ⊆ CR(A) is a closure map.
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Example 4.2 Let A be a set and let δ be a simi-
larity relation on A. Then by cA,δ : 2A → 2A we
denote a map defined by

∀X ⊆ A, cA,δ(X) = {a ∈ A :
∨
x∈X

δ(a, x) = 1}.

Then cA,δ is a closure operator.

The closure operator cA,δ has some interesting
properties. For example, the following lemma holds.

Lemma 4.1 Let (A, δ) be a Q-set and let s ⊂∼Set(Q)
(A, δ). Then for every α ∈ Q, cA,δ(sα) = sα.

Moreover, we can prove some continuity proper-
ties of the closure operator cA,δ. Let us consider
again a fuzzy set s ⊂∼Set(Q)

(A, δ). Then s : A→ Q

is a map, and on the set 2Q a closure operator cQ,↔
can be defined. Then the following lemma holds.

Lemma 4.2 Let (A, δ) be a Q-set and let s ⊂∼Set(Q)
(A, δ). Then then map

s : ((A, δ), cA,δ)→ ((Q,↔), cQ,↔)

is continuous, i.e., for every X ⊆ A, s(cA,δ(X)) ⊆
cQ,↔(s(X)).

Another continuity property of the closure opera-
tor cA,δ with respect to a morphisms in the category
Set(Q) is presented in the following lemma.

Lemma 4.3 Let f : (A, δ)→ (B, γ) be a morphism
in the category Set(Q). Then

f : ((A, δ), cA,δ)→ ((B, γ), cB,γ)

is a continuous map, i.e., for every X ⊆ A,
f(cA,δ(X)) ⊆ cB,γ(f(X)) holds.

We want to show an extension principle for clo-
sure operators. Namely, we will show how a closure
operator defined on a universe can be extended to
a closure operator defined on an another universe.
We will do it firstly for closure operators defined on
the universe constructed from a classical set, i.e.,
2A, F (A), D(A). We will need here following simple
lemma.

Lemma 4.4 Let A be a set and let (Cα)α be a semi-
cut in A. We set Cα = {a ∈ A :

∨
{β:a∈Cβ} β ≥ α}.

Then

(1) C = (Cα)α is a cut in A, C ∈ D(A),
(2) if C is a cut in A, then C = C,
(3) C is the smallest cut such that C ⊆ C.

Lemma 4.5 The map C 7→ C is a closure operator
defined on the set of all semi-cuts.

Then the following extension theorem holds.

Theorem 4.1 (Extension theorem I) Let A be
a set. Then there exist maps such that the diagram
commutes.

U(F (A))
ψF (A),A−−−−−→ U(2A)

ψA,F (A)−−−−−→ U(F (A))

ψD(A),F (A)

x ∥∥∥ yψF (A),D(A)

U(D(A))
ψD(A),A−−−−−→ U(2A)

ψA,D(A)−−−−−→ U(D(A)).

For example, let us show how the map ψD(A),A is
defined. Let c ∈ U(D(A)) be a closure operator in
D(A) and let X be a subset in A. Let us consider
the constant cut X = (Xα)α ∈ D(A), where Xα =
X for every α ∈ Q. Let us consider the c-closure
of X, i.e., c(X) = (Cα)α ∈ D(A). Then the closure
operator ψD(A),A(c) ∈ U(A) is defined by

∀X ⊆ A, ψD(A),A(c)(X) = {a ∈ A :
∨

{β:a∈Cβ}

β = 1}.

The following theorem then represents an exten-
sion theorem for closure systems in sets with sim-
ilarity relations and corresponding structures, i.e.,
fuzzy sets and f-cuts.

Theorem 4.2 (Extension theorem II) Let
(A, δ) be an Q-set. Then there exist maps such that
the following diagram commutes.

U(F (A, δ))
ϕF (A,δ),A−−−−−−→ U(A)

ϕA,F (A,δ)−−−−−−→ U(F (A, δ))xϕC(A,δ),F (A,δ) ϕF (A,δ),C(A,δ)

y
U(C(A, δ)) = U(C(A, δ)).

For example, we will show how the map ϕF (A,δ),A
is defined. Let c ∈ U(FSet(Q)(A, δ)) and let X ⊆ A.
Then the closure operator ϕF (A,δ),A(c) is defined by

ϕF (A,δ),A(c)(X) = core (c(χ̂X)).

5. Conclusions

Properties of completion maps from the set of all
semi-cuts to the set of all f-cuts (in a corresponding
Q-set (A, δ) and a category K) are investigated from
the point of view of a lattice structure defined on
the set of all f-cuts, or from the categorical point of
view, as the reflective subcategory construction.

The closure operators are then defined on various
sets based on a Q-set (A, δ), e.g., the set F (A) of all
classical fuzzy sets A→ Q, the set D(A) of all cuts
in a set A, the set CSet(Q)(A, δ) of all f-cuts in the
category Set(Q), or the set FSet(Q)(A, δ) of all fuzzy
sets in (A, δ) in the category Set(Q). It was shown
how a closure operator defined on one set can be
extended to a closure operator defined on another
set.
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