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Abstract

This paper deals with square roots of a matrix
over a complete lattice, where the matrix com-
position is ∨ − U with U being an infinitely ∨-
distributive isotonic operator. We give a general
characterization for the existence of a square root
of a matrix over a complete lattice. Furthermore,
we give methods to construct a square root of a
matrix while U is idempotent or a semi-uninorm.
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1. Introduction

Let X = {x1, x2, · · · , xn} be a finite set, L be a
linear lattice with universal bounds 0 and 1, n =
{1, 2, · · · , n}, and F (X×X) = {R : X×X → L}.
Di Nola et al. [4] considered the decomposition
problem: for a given fuzzy relation Q ∈ F (X ×
X), find a fuzzy relation S ∈ F (X×X) such that
Q = S�S, where � denotes the ∨−∧ composite
operation, i.e.,

n∨
k=1

(sik ∧ skj) = qij , i, j ∈ n. (1)

Actually, the decomposition problem can be
viewed as a generalization of finding a square
root of a Boolean matrix in [8]. Di Nola [4] gave
a necessary and sufficient condition for judging
whether there is a square root for a given matrix
over linear lattices and presented a correspond-
ing numerical algorithm. Wang [14] pointed out
a mistake in the algorithm given in [4] and mod-
ified. An algebraic characterization of minimal
and maximal elements of the square roots of a
given matrix over linear lattices was given in [5].
In 2004, Martin Kutz [10] showed that finding
roots of Boolean matrices is NP-complete, so is
finding square roots of matrices over linear lat-
tices. As a generalization, Sun [13] considered
square roots of matrices over complete lattices.
Since a T -norm (also t-norm or, unabbreviated,
triangular norm) is a kind of binary operation
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(see [9]) that generalizes intersection in a lattice,
in this paper we will consider square roots of a
matrix over a complete lattice based on some gen-
eralized T -norms.

The rest of this paper is organized as follows.
In Section 2, some definitions and preliminar-
ies are given. Residual operators induced by an
isotonic operator U and their properties are dis-
cussed in Section 3. In Section 4, a general char-
acterization of the existences of square roots of
a matrix over a complete lattice, and a theoret-
ical algorithm to find such square roots are giv-
en when the matrix composition is ∨ − U with
U being an infinitely ∨-distributive isotonic op-
erator. In Section 5, we give further results for
determining a square root of a matrix while U is
idempotent or a semi-uninorm.

2. Basic definitions and preliminaries

Here we recall some notions from lattice theory(
see [1]). Let (P,≤) be a partially ordered set, i.e.,
poset, and S be a subset of P . An element p ∈ P
is a join (or least upper bound) of S if p is an up-
per bound of S, and p ≤ x for every upper bound
x of S. Similarly, q is a meet (or greatest lower
bound) of S if q is a lower bound of S, and y ≤ q
for every lower bound y of S. A lattice L = 〈L,≤〉
is a poset in which every pair of elements p, q ∈ L
has a join p ∨ q and a meet p ∧ q. A lattice L in
which every subset possesses a meet and a join
is complete. Throughout the paper, L is always
assumed to be a complete lattice with universal
bounds 0 and 1, unless otherwise specified. De-
note Ln×m = {B = (bij)n×m : bij ∈ L, i ∈ n, j ∈
m}.

Definition 2.1 (Di Nola et al. [6]). Let Q =
(qij)n×p ∈ Ln×p and S = (sij)p×m ∈ Lp×m. De-
fine the max-min composition of Q and S to be
R = (rij)n×m ∈ Ln×m, in symbols R = Q � S,
given by

rij =
p∨

k=1
(qik ∧ skj)

for all i ∈ n, j ∈ m.

Definition 2.2 (Di Nola et al. [6]). Let
Q1 ∈ Ln×p and Q2 ∈ Ln×p. Define Q1 ∨ Q2
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as (Q1 ∨ Q2)ij = (Q1)ij ∨ (Q2)ij, Q1 ∧ Q2 as
(Q1 ∨ Q2)ij = (Q1)ij ∧ (Q2)ij, and Q1 ≤ Q2 if
and only if (Q1)ij ≤ (Q2)ij for any i ∈ n, j ∈ p.

Definition 2.3 (De Baets and Mesiar [3]). A tri-
angular norm is a binary operation T on L (i.e.,
T : L × L → L) satisfying the following proper-
ties:
(T1) existence of neutral element 1:

T (x, 1) = x, ∀x ∈ L;
(T2) monotonicity:

T (x, z) ≤ T (y, w) whenever x ≤ y, z ≤ w;
(T3) commutativity:

T (x, y) = T (y, x);
(T4) associativity:

T (x, T (y, z)) = T (T (x, y), z).

As a generalization, a uninorm was introduced
by Yager and Rybalov [16], we state it over L as
follows.

Definition 2.4 (De Baets and Mesiar [3]). A
uninorm is a binary operation U on L satisfying
the following properties:
(U1) existence of neutral element e ∈ L:

U(x, e) = x, ∀x ∈ L;
(U2) monotonicity:

U(x, z) ≤ U(y, w) whenever x ≤ y, z ≤ w;
(U3) commutativity:

U(x, y) = U(y, x);
(U4) associativity:

U(x, U(y, z)) = U(U(x, y), z).

For any uninorm U over the interval [0, 1], one
of the following two cases always holds ([7]):
(i) U is a conjunctive uninorm: U(0, 1) =

U(1, 0) = 0;
(ii) U is a disjunctive uninorm: U(0, 1) =

U(1, 0) = 1.
By omitting commutativity in uninorms,

Sander [12] introduced pseudo-uninorms over the
interval [0, 1], which were further discussed over
lattices by Wang and Fang [15].

Definition 2.5 (Wang and Fang [15]). A binary
operation U on L is called a pseudo-uninorm if
it satisfies the following conditions:
(PU1) existence of neutral element e ∈ L:

U(x, e) = x = U(e, x), ∀x ∈ L;
(PU2) monotonicity:

U(x, z) ≤ U(y, w) whenever x ≤ y, z ≤ w;
(PU3) associativity:

U(x, U(y, z)) = U(U(x, y), z).

Further, a semi-uninorm was introduced by Liu
[11] through removing associativity from pseudo-
uninorms.

Definition 2.6 (Liu [11]). A binary operation U
on L is called a semi-uninorm if it satisfies the

following conditions:
(SU1) existence of neutral element e ∈ L:

U(x, e) = x = U(e, x), ∀x ∈ L;
(SU2) monotonicity:

U(x, z) ≤ U(y, w) whenever x ≤ y, z ≤ w.

Here we omit the neutral property of a semi-
uninorm.

Definition 2.7. A binary operation U on L is
called an isotonic operator if it satisfies:
(I1) monotonicity:

U(x, z) ≤ U(y, w) whenever x ≤ y, z ≤ w.

Definition 2.8. Let Q ∈ Ln×n and U be a
binary operation on L. If there exists S ∈ Ln×n

such that Q = S⊗S, where ⊗ denotes the ∨−U
composite operation, i.e.,

qij =
n∨

k=1
U(sik, skj), i, j ∈ n, (2)

then we call S the square root of Q based on ∨−U
composition.

Definition 2.9 (Wang and Fang [15]). A binary
operation U on L is called left (resp. right) in-
finitely ∨-distributive if for all y, xj ∈ L (j ∈ J ,
where J stands for any index set.)

U(
∨
j∈J

xj , y) =
∨
j∈J

U(xj , y),

(resp.U(y,
∨
j∈J

xj) =
∨
j∈J

U(y, xj)).

A binary operation U on L is said to be infinite-
ly ∨-distributive if U is both left infinitely ∨-
distributive and right infinitely ∨-distributive.

It is worth noting that for every left (resp.
right) infinitely ∨-distributive operation U on L,
U(0, x) = 0 (resp. U(x, 0) = 0) holds for all x ∈ L
since

∨
∅ = 0.

Lemma 2.1. Let Q1, Q2 ∈ Ln×p, S ∈ Lp×m,
R ∈ Lq×n and U be an isotonic operator. If Q1 ≤
Q2 then Q1⊗S ≤ Q2⊗S and R⊗Q1 ≤ R⊗Q2.

Proof. Let Q1 ≤ Q2. From the definition of ⊗
and Definition 2.7 for any i ∈ n, j ∈ m,

(Q1 ⊗ S)ij =
p∨

k=1
U((Q1)ik, Skj)

≤
p∨

k=1
U((Q2)ik, Skj)

= (Q2 ⊗ S)ij .

Therefore Q1 ⊗ S ≤ Q2 ⊗ S. Similarly, we can
prove R⊗Q1 ≤ R⊗Q2.
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Lemma 2.2. Let I, J be any index sets, Qi ∈
Ln×p for any i ∈ I, Sj ∈ Lp×m for any j ∈ J ,
and U be an infinitely ∨-distributive operation.
Then (

∨
i∈I

Qi)⊗ (
∨

j∈J

Sj) =
∨

i∈I,j∈J

(Qi ⊗ Sj).

Proof. Suppose that U is infinitely ∨-
distributive. Then for any s ∈ n, t ∈ m,

((
∨
i∈I

Qi)⊗ (
∨
j∈J

Sj))st =
p∨

k=1
U((

∨
i∈I

Qi)sk, (
∨
j∈J

Sj)kt)

=
p∨

k=1

∨
i∈I,j∈J

U((Qi)sk, (Sj)kt)

=
∨

i∈I,j∈J

p∨
k=1

U((Qi)sk, (Sj)kt)

=
∨

i∈I,j∈J

(Qi ⊗ Sj)st

= (
∨

i∈I,j∈J

Qi ⊗ Sj)st

Therefore (
∨

i∈I

Qi) ⊗ (
∨

j∈J

Sj) =
∨

i∈I,j∈J

(Qi ⊗ Sj).

3. Residual operators induced by an
isotonic operator U

We first introduce residual operators induced by
an isotonic operator U .

Definition 3.1. Let U be an isotonic operator.
The binary operations Rl

U and Rr
U on L, defined

as: for any x, z ∈ L,

Rl
U (x, z) =

∨
{t ∈ L : U(t, x) ≤ z},

Rr
U (x, z) =

∨
{t ∈ L : U(x, t) ≤ z},

are called left residual operator and right residual
operator induced by U .

Theorem 3.1. If U(0, 1) = 0, then the following
assertions are equivalent:
(i) U is left infinitely ∨-distributive.
(ii) U(y, x) ≤ z if and only if y ≤ Rl

U (x, z) for
all x, z ∈ L.
(iii) U(Rl

U (x, z), x) ≤ z for all x, z ∈ L.
(iv) Rl

U (x, z) = max{t ∈ L : U(t, x) ≤ z} for all
x, z ∈ L.

Proof. (i)⇒(ii): For all x, z ∈ L, if U(y, x) ≤ z,
then y ≤ Rl

U (x, z) holds by the definition of
Rl

U (x, z). Conversely, if y ≤ Rl
U (x, z), by iso-

tonicity and left infinitely ∨-distributivity of U ,
we have U(y, x) ≤ U(Rl

U (x, z), x) = U(
∨
{t ∈

L : U(t, x) ≤ z}, x) = U(
∨

t∈L,U(t,x)≤z

t, x) =∨
t∈L,U(t,x)≤z

U(t, x) = z.

(ii)⇒(iii): Let y = Rl
U (x, z). Then

U(Rl
U (x, z), x) = U(y, x) ≤ z since (ii) holds.

(iii)⇒(iv): Rl
U (x, z) = max{t ∈ L : U(t, x) ≤

z} is obvious since U(Rl
U (x, z), x) ≤ z.

(iv)⇒(i): Let J be any index set and yj ∈ L for
any j ∈ J . If J 6= ∅, then U(yj0 , x) ≤ U(

∨
j∈J

yj , x)

for any j0 ∈ J by the isotonicity of U . Therefore∨
j∈J

U(yj , x) ≤ U(
∨

j∈J

yj , x). Let
∨

j∈J

U(yj , x) = z.

Then U(yj , x) ≤ z for any j ∈ J , i.e., yj ∈
{t ∈ L : U(t, x) ≤ z} for any j ∈ J . Since
Rl

U (x, z) = max{t ∈ L : U(t, x) ≤ z}, we have
yj ≤ Rl

U (x, z) for any j ∈ J . Thus
∨

j∈J

yj ≤

Rl
U (x, z). From the isotonicity of U again, it fol-

lows that U(
∨

j∈J

yj , x) ≤ U(Rl
U (x, z), x) ≤ z =∨

j∈J

U(yj , x). Then
∨

j∈J

U(yj , x) = U(
∨

j∈J

yj , x) s-

ince
∨

j∈J

U(yj , x) ≤ U(
∨

j∈J

yj , x).

If J = ∅, then
∨

j∈J

U(yj , x) = 0 and

U(
∨

j∈J

yj , x) = U(0, x) ≤ U(0, 1) = 0. Therefore∨
j∈J

U(yj , x) = U(
∨

j∈J

yj , x) holds for any index

set J , i.e., U is left infinitely ∨-distributive.

Similarly, we have:

Theorem 3.2. If U(1, 0) = 0, then the following
assertions are equivalent:
(i) U is right infinitely ∨-distributive.
(ii) U(x, y) ≤ z if and only if y ≤ Rr

U (x, z) for
all x, z ∈ L.
(iii) U(x, Rr

U (x, z)) ≤ z for all x, z ∈ L.
(iv) Rr

U (x, z) = max{t ∈ L : U(x, t) ≤ z} for all
x, z ∈ L.

Let A ∈ Ln×p, B ∈ Ln×m. Define the ~l com-
position of A and B, A ~l B ∈ Lp×m, and the
~r composition of A and B, A ~r B ∈ Lp×m,
respectively by

(A ~l B)ij =
n∧

k=1
Rl

U (Aki, Bkj), i ∈ p, j ∈ m, (3)

and

(A ~r B)ij =
n∧

k=1
Rr

U (Aki, Bkj), i ∈ p, j ∈ m. (4)

Theorem 3.3. Let A ∈ Ln×p, B ∈ Ln×m and U
be a right infinitely ∨-distributive isotonic opera-
tor. Then A ~r B = max{X ∈ Lp×m : A⊗X ≤
B}.

Proof. We first prove A ~r B ∈ {X ∈ Lp×m :
A ⊗ X ≤ B}. By Theorem 3.2, for any i ∈ n,
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j ∈ m,

(A⊗ (A ~r B))ij =
p∨

k=1
U(Aik, (A ~r B)kj)

=
p∨

k=1
U(Aik,

n∧
t=1

Rr
U (Atk, Btj))

≤
p∨

k=1
U(Aik, Rr

U (Aik, Bij))

≤ Bij .

To complete the proof, we need to show for any
X ∈ {X ∈ Lp×m : A⊗X ≤ B}, X ≤ A~r B. Let
X ∈ Lp×m and A⊗X ≤ B. Then U(Aik, Xkj) ≤

p∨
k=1

U(Aik, Xkj) ≤ Bij for any i ∈ n, j ∈ m, k ∈

p. Therefore Xkj ≤ Rr
U (Aik, Bij) for any i ∈ n.

Then Xkj ≤
n∧

i=1
Rr

U (Aik, Bij) = (A ~r B)kj , and

hence A ~r B = max{X ∈ Lp×m : A ⊗ X ≤
B}.

Theorem 3.4. Let A ∈ Lp×m, B ∈ Ln×m and
U be a left infinitely ∨-distributive isotonic oper-
ator. Then A ~l B = max{X ∈ Ln×p : X ⊗ A ≤
B}.

Proof. Similar to the proof of Theorem 3.3.

Corollary 3.1. Let A ∈ Ln×p, B ∈ Ln×m and
U be a right infinitely ∨-distributive isotonic op-
erator. For any X ∈ Lp×m, if X ≤ A~r B, then
A⊗X ≤ B.

Proof. From Lemma 2.1 and Theorem 3.3, we
have A⊗X ≤ A⊗ (A ~r B) ≤ B.

Corollary 3.2. Let A ∈ Lp×m, B ∈ Ln×m and
U be a left infinitely ∨-distributive isotonic oper-
ator. For any X ∈ Ln×p, if X ≤ A ~l B, then
X ⊗A ≤ B.

Proof. Similar to the proof of Corollary 3.1.

Corollary 3.3. Let A, B ∈ Ln×n and U be an
infinitely ∨-distributive isotonic operator. Then
A ≤ A ~l B if and only if A ≤ A ~r B.

Proof. If A ≤ A ~l B, then by Corollary 3.2
A ⊗ A ≤ B, therefore A ≤ A ~r B by Theorem
3.3. Vice versa.

If U is commutative, then Rl
U (x, y) = Rr

U (x, y)
for all x, y ∈ L. When U is commutative, we
denote RU = Rl

U = Rr
U and A ~ B = A ~l B =

A ~r B.

4. General results on finding square roots
of a matrix over L when U is an
infinitely ∨-distributive isotonic
operator

In this section, U is assumed to be an infinitely
∨-distributive isotonic operator. We shall give
general results on the existence of square roots
of a matrix over complete lattices and show a
theoretical way to find the square roots. Let Q ∈
Ln×n. For any s, t ∈ n, define an n × n matrix
RQ(s,t) with (RQ(s,t))ij = 0 whenever s 6= i and
t 6= j. Denote RQ(s,t) = {RQ(s,t) : (RQ(s,t) ⊗
RQ(s,t))st = Qst, RQ(s,t) ⊗ RQ(s,t) ≤ Q}. Pick
one RQ(s,t) in each RQ(s,t), s, t ∈ n, to form
RQ, i.e., RQ = {RQ(1,1), RQ(1,2), · · · , RQ(n,n)},
such that A⊗B ≤ Q for any A, B ∈ RQ. Denote
RQ the set of all such RQs.
We now give a characterization for the exis-

tence for a square root of a given matrix over a
complete lattice.

Theorem 4.1. A matrix Q ∈ Ln×n has square
roots if and only if RQ 6= ∅. Furthermore, if
RQ 6= ∅, then for any RQ ∈ RQ, (

∨
RQ) ⊗

(
∨
RQ) = Q, and all square roots of Q can be

represented by
∨
RQ.

Proof. Suppose that S is a square root of Q ∈
Ln×n. For any s, t ∈ n, define RQ(s,t) as

(RQ(s,t))ij =
{

0, s 6= i and t 6= j,
Sij , otherwise.

It is obvious that RQ(s,t) ≤ S and (RQ(s,t) ⊗
RQ(s,t))st =

n∨
k=1

U(Ssk, Skt) = Qst. Then by

Lemma 2.1 RQ(s,t) ⊗ RQ(i,j) ≤ S ⊗ S = Q.
Therefore RQ = {RQ(s,t), s, t ∈ n} ∈ RQ, i.e.,
RQ 6= ∅.

Conversely, let RQ = {RQ(s,t), s, t ∈ n} ∈
RQ. Since (RQ(s,t) ⊗ RQ(s,t))st = Qst and
RQ(s,t) ⊗ RQ(i,j) ≤ Q for any i, j, s, t ∈ n, from
Lemma 2.2 it follows that

(
∨
RQ)⊗ (

∨
RQ)

= (
∨

RQ(s,t)∈RQ

RQ(s,t))⊗ (
∨

RQ(i,j)∈RQ

RQ(i,j))

=
∨

RQ(s,t),RQ(i,j)∈RQ

(RQ(s,t) ⊗RQ(i,j))

= Q.

Moreover, the assertion that all square roots of
Q can be represented by

∨
RQ has been implied

in the first part of the proof.

From the proof of Theorem 4.1, we can get the
following theoretical way to find the square roots.

24



Algorithm 4.1. Finding square roots of Q ∈
Ln×n.
Step 1. Find RQ(s,t) such that (RQ(s,t) ⊗
RQ(s,t))st = Qst.
Step 2. Determine RQ(s,t).
Step 3. Construct RQ and RQ.
Step 4. If RQ = ∅, then Q has no square
roots, otherwise

∨
RQ is a square root for any

RQ ∈ RQ.

At the end of this section, we give an example
to illustrate Algorithm 4.1.

Example 4.1. Let L be a complete lattice as
follows.

0

a b

1

Define a binary operation U , shown below, over
L.

U 0 a b 1
0 0 0 0 0
a 0 1 a 1
b 0 a b 1
1 0 1 1 1

We can check U is an infinitely ∨-distributive

conjunctive uninorm. Let Q =
(

a b
b a

)
. Then

RQ(1,1) = RQ(2,2) = {
(

0 b
a 0

)
,

(
0 a
b 0

)
},

RQ(1,2) = {
(

b b
0 b

)
,

(
b b
0 0

)
,

(
0 b
0 b

)
},

RQ(2,1) = {
(

b 0
b b

)
,

(
b 0
b 0

)
,

(
0 0
b b

)
}.

Since
(

0 b
a 0

)
⊗
(

b 0
b b

)
=
(

b b
a 0

)
,(

0 b
a 0

)
⊗

(
b 0
b 0

)
=

(
b 0
a 0

)
,(

0 b
a 0

)
⊗

(
0 0
b b

)
=

(
b b
0 0

)
,(

0 a
b 0

)
⊗

(
b b
0 b

)
=

(
0 a
b b

)
,(

0 a
b 0

)
⊗

(
b b
0 0

)
=

(
0 0
b b

)
,(

0 a
b 0

)
⊗
(

0 b
0 b

)
=

(
0 a
0 b

)
, we

have RQ = ∅. Therefore Q has no square roots.

Theorem 4.1 gives a general characterization of
the existence of a square root for a given matrix
over a complete lattice when U is an infinitely

∨-distributive isotonic operator. However, deter-
mining RQ and RQ is not easy. In the following
section we try to determine RQ.

5. Determine RQ while U is idempotent
or a semi-uninorm

Theorem 4.1 and Algorithm 4.1 reveal that find-
ing square roots of Q ∈ Ln×n is equivalent to de-
termineRQ when U is an infinitely ∨-distributive
isotonic operator. In this section, we further as-
sume U to be idempotent (i.e., U(x, x) = x for
all x ∈ L, see [2]) or be a semi-uninorm, then
determine RQ under such assumptions.
For an idempotent infinitely ∨-distributive iso-

tonic operator U , for any s, t ∈ n, define
RQ(s,t)

= = {RQ(s,k,t)
= : k ∈ n}, where RQ(s,k,t)

=
is defined as: for any i, j ∈ n,

(RQ(s,k,t)
= )ij =

 Qst, (s, k) = (i, j),
Qst, (k, t) = (i, j),
0, otherwise.

Theorem 5.1. For any s, t ∈ n, for any M ∈
RQ(s,t)

= , if M ≤M ~l Q, then M ∈ RQ(s,t).

Proof. By the definition of RQ(s,t), we need to
prove (M ⊗M)st = Qst and M ⊗M ≤ Q. For
any M ∈ RQ(s,t)

= , there is some k0 ∈ n such that
M = RQ(s,k0,t)

= , i.e., Msk0 = Mk0t = Qst. Since
U is infinitely ∨-distributive, we have U(0, x) =
U(x, 0) = 0 for any x ∈ L. Therefore (M ⊗
M)st =

n∨
k=1

U(Msk, Mkt) = U(Msk0 , Mk0t) =

U(Qst, Qst) = Qst. From M ≤M~lQ, M⊗M ≤
Q holds by Corollary 3.2. Thus M ∈ RQ(s,t).

Take each RQ(s,kst,t)
= , where kst ∈ n,

in RQ(s,t)
= to form RQ=, i.e., RQ= =

{RQ(1,k11,1)
= , RQ(1,k12,2)

= , · · · , RQ(n,knn,n)
= }.

Theorem 5.2. If
∨
RQ= ≤ (

∨
RQ=)~lQ, then

(
∨
RQ=)⊗ (

∨
RQ=) = Q.

Proof. If
∨
RQ= ≤ (

∨
RQ=) ~l Q, then Corol-

lary 3.2 ensures that (
∨
RQ=)⊗ (

∨
RQ=) ≤ Q.

Now, we shall prove (
∨
RQ=) ⊗ (

∨
RQ=) ≥ Q.

From the proof of Theorem 5.1, we know for any
RQ(s,kst,t)

= ∈ RQ=, (RQ(s,kst,t)
= ⊗RQ(s,kst,t)

= )st =
Qst. Then for any i, j ∈ n, ((

∨
RQ=) ⊗

(
∨
RQ=))ij = ((

∨
RQ

(s,kst,t)
= ∈RQ=

RQ(s,kst,t)
= ) ⊗

(
∨

RQ
(s,kst,t)
= ∈RQ=

RQ(s,kst,t)
= ))ij ≥ (RQ

(i,kij ,j)
= ⊗

RQ
(i,kij ,j)
= )ij = Qij . Therefore (

∨
RQ=) ⊗

(
∨
RQ=) = Q.
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For an infinitely ∨-distributive semi-uninorm
U (e is the neutral element), for any s, t ∈ n,
define RQ(s,t)

e = {RQ
(s,k,t)
e : k ∈ n} as

(RQ(s,k,t)
e )ij =

 Qst, (s, k) = (i, j),
e, (k, t) = (i, j),
0, otherwise,

or

(RQ(s,k,t)
e )ij =

 e, (s, k) = (i, j),
Qst, (k, t) = (i, j),
0, otherwise,

where |{s, k, t}| 6= 1 or |{s, k, t}| = 1 with Qss =
e.

Theorem 5.3. For any s, t ∈ n, for any M ∈
RQ(s,t)

e , if M ≤M ~l Q, then M ∈ RQ(s,t).

Proof. Similar to the proof of Theorem 5.1 since
U(Qst, e) = U(e, Qst) = Qst.

Pick one RQ
(s,kst,t)
e (kst ∈ n) in

each RQ(s,t)
e to form RQe, i.e., RQe =

{RQ
(1,k11,1)
e , RQ

(1,k12,2)
e , · · · , RQ

(n,knn,n)
e }.

Theorem 5.4. If
∨
RQe ≤ (

∨
RQe)~l Q, then

(
∨
RQe)⊗ (

∨
RQe) = Q.

Proof. Similar to the proof of Theorem 5.2.

We point out here that ~l in Theorems 5.1,
5.2, 5.3 and 5.4 can be replaced by ~r with the
help of Corollary 3.3.
In the following, we give examples to help un-

derstanding Theorems 5.2 and 5.4.

Example 5.1. Let L be a complete lattice as
follows.

0

a b

c

1

Consider the following binary operation U over
L.

U 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c 1
1 0 a b 1 1

We can check U is infinitely ∨-distributive, iso-
tonic, idempotent, and has neutral element c.

Let Q =
(

a 0
b 1

)
. Consider RQ= =

{RQ(1,1,1)
= , RQ(1,1,2)

= , RQ(2,2,1)
= , RQ(2,2,2)

= }, where

RQ(1,1,1)
= =

(
a 0
0 0

)
, RQ(1,1,2)

= =
(

0 0
0 0

)
,

RQ(2,2,1)
= =

(
0 0
b b

)
, RQ(2,2,2)

= =
(

0 0
0 1

)
.

Obviously,
∨
RQ= =

(
a 0
b 1

)
, (
∨
RQ=) ~l

Q =
(

1 ∧ 1 b ∧ 1
1 ∧ b 1 ∧ 1

)
=
(

1 b
b 1

)
≥
∨
RQ=.

From Theorem 5.2,
(

a 0
b 1

)
is a square root

of
(

a 0
b 1

)
. Moreover, it is the unique square

root.
Let Q =

(
c a
b c

)
. Consider RQe =

{RQ
(1,1,1)
e , RQ

(1,2,2)
e , RQ

(2,2,1)
e , RQ

(2,2,2)
e }, where

RQ
(1,1,1)
e =

(
c 0
0 0

)
, RQ

(1,2,2)
e =

(
0 a
0 c

)
,

RQ
(2,2,1)
e =

(
0 0
b c

)
, RQ

(2,2,2)
e =

(
0 0
0 c

)
.

Obviously,
∨
RQe =

(
c a
b c

)
, (
∨
RQe) ~l

Q =
(

c ∧ 1 a ∧ 1
1 ∧ b 1 ∧ c

)
=
(

c a
b c

)
≥
∨
RQe.

From Theorem 5.4,
(

c a
b c

)
is a square root

of
(

c a
b c

)
. Moreover, it is the unique square

root.
Let Q =

(
1 1
1 1

)
. Consider RQe =

{RQ
(1,1,1)
e , RQ

(1,1,2)
e , RQ

(2,1,1)
e , RQ

(2,2,2)
e }, where

RQ
(1,1,1)
e =

(
1 0
0 0

)
, RQ

(1,1,2)
e =

(
1 c
0 0

)
,

RQ
(2,1,1)
e =

(
1 0
c 0

)
, RQ

(2,2,2)
e =

(
0 0
0 1

)
.

Obviously,
∨
RQe =

(
1 c
c 1

)
, (
∨
RQe) ~l

Q =
(

1 ∧ 1 1 ∧ 1
1 ∧ 1 1 ∧ 1

)
=
(

1 1
1 1

)
≥
∨
RQe.

From Theorem 5.4,
(

c 1
1 c

)
is a square root of(

1 1
1 1

)
.
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