Square roots of matrices over a complete lattice

Feng $\mathbf{Sun}^{1,2}^* \mathbf{Xue}$ -ping \mathbf{Wang}^2 Xiao-bing \mathbf{Qu}^1 Tian-fei \mathbf{Wang}^1

¹College of Mathematics and Information Science, Leshan Normal University, Leshan, Sichuan 614004, China ²College of Mathematics and Software Science, Sichuan Normal University, Chengdu, Sichuan 610066, China

Abstract

This paper deals with square roots of a matrix over a complete lattice, where the matrix composition is $\lor - U$ with U being an infinitely \lor -distributive isotonic operator. We give a general characterization for the existence of a square root of a matrix over a complete lattice. Furthermore, we give methods to construct a square root of a matrix while U is idempotent or a semi-uninorm.

Keywords: Square roots of a matrix; complete lattices; isotonic operator; infinitely \lor -distributive; semi-uninorm.

1. Introduction

Let $X = \{x_1, x_2, \dots, x_n\}$ be a finite set, L be a linear lattice with universal bounds 0 and 1, $\underline{n} = \{1, 2, \dots, n\}$, and $F(X \times X) = \{R : X \times X \to L\}$. Di Nola et al. [4] considered the decomposition problem: for a given fuzzy relation $Q \in F(X \times X)$, find a fuzzy relation $S \in F(X \times X)$ such that $Q = S \odot S$, where \odot denotes the $\lor - \land$ composite operation, i.e.,

$$\bigvee_{k=1}^{n} (s_{ik} \wedge s_{kj}) = q_{ij}, i, j \in \underline{n}.$$
 (1)

Actually, the decomposition problem can be viewed as a generalization of finding a square root of a Boolean matrix in [8]. Di Nola [4] gave a necessary and sufficient condition for judging whether there is a square root for a given matrix over linear lattices and presented a corresponding numerical algorithm. Wang [14] pointed out a mistake in the algorithm given in [4] and modified. An algebraic characterization of minimal and maximal elements of the square roots of a given matrix over linear lattices was given in [5]. In 2004, Martin Kutz [10] showed that finding roots of Boolean matrices is NP-complete, so is finding square roots of matrices over linear lattices. As a generalization, Sun [13] considered square roots of matrices over complete lattices. Since a T-norm (also t-norm or, unabbreviated, triangular norm) is a kind of binary operation (see [9]) that generalizes intersection in a lattice, in this paper we will consider square roots of a matrix over a complete lattice based on some generalized T-norms.

The rest of this paper is organized as follows. In Section 2, some definitions and preliminaries are given. Residual operators induced by an isotonic operator U and their properties are discussed in Section 3. In Section 4, a general characterization of the existences of square roots of a matrix over a complete lattice, and a theoretical algorithm to find such square roots are given when the matrix composition is $\vee - U$ with U being an infinitely \vee -distributive isotonic operator. In Section 5, we give further results for determining a square root of a matrix while U is idempotent or a semi-uninorm.

2. Basic definitions and preliminaries

Here we recall some notions from lattice theory(see [1]). Let (P, \leq) be a partially ordered set, i.e., poset, and S be a subset of P. An element $p \in P$ is a *join* (or *least upper bound*) of S if p is an upper bound of S, and p < x for every upper bound x of S. Similarly, q is a meet (or greatest lower *bound*) of S if q is a lower bound of S, and y < qfor every lower bound y of S. A lattice $L = \langle L, \leq \rangle$ is a poset in which every pair of elements $p, q \in L$ has a join $p \lor q$ and a meet $p \land q$. A lattice L in which every subset possesses a meet and a join is *complete*. Throughout the paper, L is always assumed to be a complete lattice with universal bounds 0 and 1, unless otherwise specified. Denote $L^{n \times m} = \{B = (b_{ij})_{n \times m} : b_{ij} \in L, i \in \underline{n}, j \in I\}$ m.

Definition 2.1 (Di Nola et al. [6]). Let $Q = (q_{ij})_{n \times p} \in L^{n \times p}$ and $S = (s_{ij})_{p \times m} \in L^{p \times m}$. Define the max-min composition of Q and S to be $R = (r_{ij})_{n \times m} \in L^{n \times m}$, in symbols $R = Q \odot S$, given by

$$r_{ij} = \bigvee_{k=1}^{p} \left(q_{ik} \wedge s_{kj} \right)$$

for all $i \in \underline{n}, j \in \underline{m}$.

Definition 2.2 (Di Nola et al. [6]). Let $Q_1 \in L^{n \times p}$ and $Q_2 \in L^{n \times p}$. Define $Q_1 \vee Q_2$

^{*}Corresponding author. sunfeng1005@163.com

as $(Q_1 \vee Q_2)_{ij} = (Q_1)_{ij} \vee (Q_2)_{ij}, Q_1 \wedge Q_2$ as $(Q_1 \vee Q_2)_{ij} = (Q_1)_{ij} \wedge (Q_2)_{ij}, \text{ and } Q_1 \leq Q_2 \text{ if}$ and only if $(Q_1)_{ij} \leq (Q_2)_{ij}$ for any $i \in \underline{n}, j \in \underline{p}$.

Definition 2.3 (De Baets and Mesiar [3]). A triangular norm is a binary operation T on L (i.e., $T: L \times L \rightarrow L$) satisfying the following properties:

(T1) existence of neutral element 1:

 $T(x,1) = x, \, \forall x \in L;$

(T2) monotonicity:

 $T(x,z) \leq T(y,w)$ whenever $x \leq y, z \leq w$; (T3) commutativity:

T(x,y) = T(y,x);

(T4) associativity:

$$T(x, T(y, z)) = T(T(x, y), z).$$

As a generalization, a uninorm was introduced by Yager and Rybalov [16], we state it over L as follows.

Definition 2.4 (De Baets and Mesiar [3]). A uninorm is a binary operation U on L satisfying the following properties:

(U1) existence of neutral element $e \in L$:

 $U(x,e) = x, \, \forall x \in L;$

(U2) monotonicity:

 $U(x,z) \leq U(y,w)$ whenever $x \leq y, z \leq w$; (U3) commutativity:

U(x,y) = U(y,x);

(U4) associativity: U(x, U(y, z)) = U(U(x, y), z).

For any uninorm U over the interval [0, 1], one of the following two cases always holds ([7]):

(i) U is a conjunctive uninorm: U(0,1) = U(1,0) = 0;

(ii) U is a disjunctive uninorm: U(0,1) = U(1,0) = 1.

By omitting commutativity in uninorms, Sander [12] introduced pseudo-uninorms over the interval [0, 1], which were further discussed over lattices by Wang and Fang [15].

Definition 2.5 (Wang and Fang [15]). A binary operation U on L is called a pseudo-uninorm if it satisfies the following conditions:

(PU1) existence of neutral element $e \in L$: $U(x, e) = x = U(e, x), \forall x \in L;$ (PU2) monotonicity: $U(x, z) \leq U(y, w)$ whenever $x \leq y, z \leq w;$ (PU3) associativity:

U(x, U(y, z)) = U(U(x, y), z).

Further, a semi-uninorm was introduced by Liu [11] through removing associativity from pseudo-uninorms.

Definition 2.6 (Liu [11]). A binary operation Uon L is called a semi-uninorm if it satisfies the following conditions:

 $\begin{array}{l} ({\rm SU1}) \ existence \ of \ neutral \ element \ e \in L; \\ U(x,e) = x = U(e,x), \ \forall x \in L; \\ ({\rm SU2}) \ monotonicity: \\ U(x,z) \leq U(y,w) \ whenever \ x \leq y, \ z \leq w. \end{array}$

Here we omit the neutral property of a semiuninorm.

Definition 2.7. A binary operation U on L is called an isotonic operator if it satisfies: (I1) monotonicity:

 $U(x,z) \leq U(y,w)$ whenever $x \leq y, z \leq w$.

Definition 2.8. Let $Q \in L^{n \times n}$ and U be a binary operation on L. If there exists $S \in L^{n \times n}$ such that $Q = S \otimes S$, where \otimes denotes the $\vee -U$ composite operation, *i.e.*,

$$q_{ij} = \bigvee_{k=1}^{n} U(s_{ik}, s_{kj}), i, j \in \underline{n},$$
(2)

then we call S the square root of Q based on $\vee -U$ composition.

Definition 2.9 (Wang and Fang [15]). A binary operation U on L is called left (resp. right) infinitely \lor -distributive if for all $y, x_j \in L$ ($j \in J$, where J stands for any index set.)

$$U(\bigvee_{j\in J} x_j, y) = \bigvee_{j\in J} U(x_j, y),$$

(resp. $U(y, \bigvee_{j\in J} x_j) = \bigvee_{j\in J} U(y, x_j)).$

A binary operation U on L is said to be infinitely \lor -distributive if U is both left infinitely \lor distributive and right infinitely \lor -distributive.

It is worth noting that for every left (resp. right) infinitely \lor -distributive operation U on L, U(0, x) = 0 (resp. U(x, 0) = 0) holds for all $x \in L$ since $\bigvee \emptyset = 0$.

Lemma 2.1. Let Q_1 , $Q_2 \in L^{n \times p}$, $S \in L^{p \times m}$, $R \in L^{q \times n}$ and U be an isotonic operator. If $Q_1 \leq Q_2$ then $Q_1 \otimes S \leq Q_2 \otimes S$ and $R \otimes Q_1 \leq R \otimes Q_2$.

Proof. Let $Q_1 \leq Q_2$. From the definition of \otimes and Definition 2.7 for any $i \in \underline{n}, j \in \underline{m}$,

$$(Q_1 \otimes S)_{ij} = \bigvee_{k=1}^p U((Q_1)_{ik}, S_{kj})$$
$$\leq \bigvee_{k=1}^p U((Q_2)_{ik}, S_{kj})$$
$$= (Q_2 \otimes S)_{ij}.$$

Therefore $Q_1 \otimes S \leq Q_2 \otimes S$. Similarly, we can prove $R \otimes Q_1 \leq R \otimes Q_2$. \Box

Lemma 2.2. Let I, J be any index sets, $Q_i \in L^{n \times p}$ for any $i \in I$, $S_j \in L^{p \times m}$ for any $j \in J$, and U be an infinitely \vee -distributive operation. Then $(\bigvee_{i \in I} Q_i) \otimes (\bigvee_{j \in J} S_j) = \bigvee_{i \in I, j \in J} (Q_i \otimes S_j).$

Proof. Suppose that U is infinitely \lor -distributive. Then for any $s \in \underline{n}, t \in \underline{m}$,

$$((\bigvee_{i \in I} Q_i) \otimes (\bigvee_{j \in J} S_j))_{st} = \bigvee_{k=1}^p U((\bigvee_{i \in I} Q_i)_{sk}, (\bigvee_{j \in J} S_j)_{kt})$$
$$= \bigvee_{k=1}^p \bigvee_{i \in I, j \in J} U((Q_i)_{sk}, (S_j)_{kt})$$
$$= \bigvee_{i \in I, j \in J} \bigvee_{k=1}^p U((Q_i)_{sk}, (S_j)_{kt})$$
$$= \bigvee_{i \in I, j \in J} (Q_i \otimes S_j)_{st}$$
$$= (\bigvee_{i \in I, j \in J} Q_i \otimes S_j)_{st}$$

Therefore $(\bigvee_{i \in I} Q_i) \otimes (\bigvee_{j \in J} S_j) = \bigvee_{i \in I, j \in J} (Q_i \otimes S_j).$

3. Residual operators induced by an isotonic operator U

We first introduce residual operators induced by an isotonic operator U.

Definition 3.1. Let U be an isotonic operator. The binary operations R_U^l and R_U^r on L, defined as: for any $x, z \in L$,

$$\begin{split} R^l_U(x,z) &= \bigvee \{t \in L : U(t,x) \leq z\}, \\ R^r_U(x,z) &= \bigvee \{t \in L : U(x,t) \leq z\}, \end{split}$$

are called left residual operator and right residual operator induced by U.

Theorem 3.1. If U(0,1) = 0, then the following assertions are equivalent:

(i) U is left infinitely \lor -distributive. (ii) $U(y,x) \leq z$ if and only if $y \leq R_U^l(x,z)$ for all $x, z \in L$. (iii) $U(R_U^l(x,z),x) \leq z$ for all $x, z \in L$.

(*iii*) $U(I_U(x,z),x) \leq z$ for all $x, z \in L$. (*iv*) $R_U^l(x,z) = \max\{t \in L : U(t,x) \leq z\}$ for all $x, z \in L$.

Proof. (i) \Rightarrow (ii): For all $x, z \in L$, if $U(y, x) \leq z$, then $y \leq R_U^l(x, z)$ holds by the definition of $R_U^l(x, z)$. Conversely, if $y \leq R_U^l(x, z)$, by isotonicity and left infinitely \lor -distributivity of U, we have $U(y, x) \leq U(R_U^l(x, z), x) = U(\bigvee \{t \in L : U(t, x) \leq z\}, x) = U(\bigvee t, x) =$

$$\bigvee_{t \in L, U(t,x) \le z} U(t,x) = z.$$

(ii) \Rightarrow (iii): Let $y = R_U^l(x, z)$. Then $U(R_U^l(x, z), x) = U(y, x) \le z$ since (ii) holds.

(iii) \Rightarrow (iv): $R_U^l(x,z) = \max\{t \in L : U(t,x) \le z\}$ is obvious since $U(R_U^l(x,z),x) \le z$.

 $\begin{array}{ll} (\mathrm{iv}) &\Rightarrow (\mathrm{i}): \ \mathrm{Let}\ J \ \mathrm{be}\ \mathrm{any}\ \mathrm{index}\ \mathrm{set}\ \mathrm{and}\ y_j \in L \ \mathrm{for} \\ \mathrm{any}\ j \in J. \ \mathrm{If}\ J \neq \emptyset, \ \mathrm{then}\ U(y_{j_0}, x) \leq U(\bigvee_{j \in J} y_j, x) \\ \mathrm{for}\ \mathrm{any}\ j_0 \in J \ \mathrm{by}\ \mathrm{the}\ \mathrm{isotonicity}\ \mathrm{of}\ U. \ \mathrm{Therefore} \\ \bigvee_{j \in J} U(y_j, x) \leq U(\bigvee_{j \in J} y_j, x). \ \mathrm{Let}\ \bigvee_{j \in J} U(y_j, x) = z. \\ \sum_{j \in J} U(y_j, x) \leq U(\bigvee_{j \in J} y_j, x). \ \mathrm{Let}\ \bigvee_{j \in J} U(y_j, x) = z. \\ \mathrm{Then}\ U(y_j, x) \leq U(\bigvee_{j \in J} y_j, x). \ \mathrm{Let}\ \bigvee_{j \in J} U(y_j, x) = z. \\ \mathrm{ft}\ \in L:\ U(t, x) \leq z \ \mathrm{for}\ \mathrm{any}\ j \in J. \ \mathrm{Since} \\ R_U^l(x, z) = \max\{t \in L:\ U(t, x) \leq z\}, \ \mathrm{we}\ \mathrm{have} \\ y_j \leq R_U^l(x, z) \ \mathrm{for}\ \mathrm{any}\ j \in J. \ \mathrm{Thus}\ \bigvee_{j \in J} y_j \leq \\ R_U^l(x, z). \ \mathrm{From}\ \mathrm{th}\ \mathrm{isotonicity}\ \mathrm{of}\ U \ \mathrm{again}, \ \mathrm{it}\ \mathrm{follows}\ \mathrm{that}\ U(\bigvee_{j \in J} y_j, x) \leq U(R_U^l(x, z), x) \leq z = \\ \bigvee_{j \in J} U(y_j, x). \ \mathrm{Then}\ \bigvee_{j \in J} U(y_j, x) = U(\bigvee_{j \in J} y_j, x) \ \mathrm{stat} \\ \mathrm{inc}\ \bigvee_{j \in J} U(y_j, x) \leq U(\bigvee_{j \in J} y_j, x). \\ \mathrm{If}\ J = \emptyset, \ \mathrm{then}\ \bigvee_{j \in J} U(y_j, x) = 0 \ \mathrm{and} \\ U(\bigvee_{j \in J} y_j, x) = U(0, x) \leq U(0, 1) = 0. \ \mathrm{Therefore} \\ \bigvee_{j \in J} U(y_j, x) = U(\bigvee_{j \in J} y_j, x) \ \mathrm{holds}\ \mathrm{for}\ \mathrm{any}\ \mathrm{index} \\ \bigvee_{j \in J} U(y_j, x) = U(\bigvee_{j \in J} y_j, x) \ \mathrm{holds}\ \mathrm{for}\ \mathrm{any}\ \mathrm{index} \end{array}$

set J, i.e., U is left infinitely \lor -distributive. \Box

Similarly, we have:

Theorem 3.2. If U(1,0) = 0, then the following assertions are equivalent:

(i) U is right infinitely \lor -distributive.

(ii) $U(x,y) \leq z$ if and only if $y \leq R_U^r(x,z)$ for all $x, z \in L$.

 $\begin{array}{l} (iii) \ U(x,R^r_U(x,z)) \leq z \ for \ all \ x,z \in L. \\ (iv) \ R^r_U(x,z) = \max\{t \in L : U(x,t) \leq z\} \ for \ all \\ x,z \in L. \end{array}$

Let $A \in L^{n \times p}$, $B \in L^{n \times m}$. Define the \circledast^l composition of A and B, $A \circledast^l B \in L^{p \times m}$, and the \circledast^r composition of A and B, $A \circledast^r B \in L^{p \times m}$, respectively by

$$(A \circledast^l B)_{ij} = \bigwedge_{k=1}^n R_U^l(A_{ki}, B_{kj}), i \in \underline{p}, j \in \underline{m}, \quad (3)$$

and

$$(A \circledast^r B)_{ij} = \bigwedge_{k=1}^n R_U^r(A_{ki}, B_{kj}), i \in \underline{p}, j \in \underline{m}.$$
 (4)

Theorem 3.3. Let $A \in L^{n \times p}$, $B \in L^{n \times m}$ and U be a right infinitely \vee -distributive isotonic operator. Then $A \circledast^r B = \max\{X \in L^{p \times m} : A \otimes X \le B\}$.

Proof. We first prove $A \circledast^r B \in \{X \in L^{p \times m} : A \otimes X \leq B\}$. By Theorem 3.2, for any $i \in \underline{n}$,

 $j\in m,$

$$(A \otimes (A \otimes^r B))_{ij} = \bigvee_{k=1}^p U(A_{ik}, (A \otimes^r B)_{kj})$$
$$= \bigvee_{k=1}^p U(A_{ik}, \bigwedge_{t=1}^n R_U^r(A_{tk}, B_{tj}))$$
$$\leq \bigvee_{k=1}^p U(A_{ik}, R_U^r(A_{ik}, B_{ij}))$$
$$\leq B_{ij}.$$

To complete the proof, we need to show for any $X \in \{X \in L^{p \times m} : A \otimes X \leq B\}, X \leq A \circledast^r B$. Let $X \in L^{p \times m}$ and $A \otimes X \leq B$. Then $U(A_{ik}, X_{kj}) \leq \bigvee_{k=1}^{p} U(A_{ik}, X_{kj}) \leq B_{ij}$ for any $i \in \underline{n}, j \in \underline{m}, k \in \underline{p}$. Therefore $X_{kj} \leq R_U^r(A_{ik}, B_{ij})$ for any $i \in \underline{n}$. Then $X_{kj} \leq \bigwedge_{i=1}^{n} R_U^r(A_{ik}, B_{ij}) = (A \circledast^r B)_{kj}$, and hence $A \circledast^r B = \max\{X \in L^{p \times m} : A \otimes X \leq B\}$.

Theorem 3.4. Let $A \in L^{p \times m}$, $B \in L^{n \times m}$ and U be a left infinitely \lor -distributive isotonic operator. Then $A \circledast^l B = \max\{X \in L^{n \times p} : X \otimes A \le B\}.$

Proof. Similar to the proof of Theorem 3.3. \Box

Corollary 3.1. Let $A \in L^{n \times p}$, $B \in L^{n \times m}$ and U be a right infinitely \vee -distributive isotonic operator. For any $X \in L^{p \times m}$, if $X \leq A \circledast^r B$, then $A \otimes X \leq B$.

Proof. From Lemma 2.1 and Theorem 3.3, we have $A \otimes X \leq A \otimes (A \otimes^r B) \leq B$.

Corollary 3.2. Let $A \in L^{p \times m}$, $B \in L^{n \times m}$ and U be a left infinitely \lor -distributive isotonic operator. For any $X \in L^{n \times p}$, if $X \leq A \circledast^l B$, then $X \otimes A \leq B$.

Proof. Similar to the proof of Corollary 3.1. \Box

Corollary 3.3. Let $A, B \in L^{n \times n}$ and U be an infinitely \vee -distributive isotonic operator. Then $A \leq A \circledast^l B$ if and only if $A \leq A \circledast^r B$.

Proof. If $A \leq A \otimes^{l} B$, then by Corollary 3.2 $A \otimes A \leq B$, therefore $A \leq A \otimes^{r} B$ by Theorem 3.3. Vice versa.

If U is commutative, then $R_U^l(x, y) = R_U^r(x, y)$ for all $x, y \in L$. When U is commutative, we denote $R_U = R_U^l = R_U^r$ and $A \circledast B = A \circledast^l B =$ $A \circledast^r B.$

4. General results on finding square roots of a matrix over *L* when *U* is an infinitely ∨-distributive isotonic operator

In this section, U is assumed to be an infinitely \lor -distributive isotonic operator. We shall give general results on the existence of square roots of a matrix over complete lattices and show a theoretical way to find the square roots. Let $Q \in L^{n \times n}$. For any $s, t \in \underline{n}$, define an $n \times n$ matrix $RQ^{(s,t)}$ with $(RQ^{(s,t)})_{ij} = 0$ whenever $s \neq i$ and $t \neq j$. Denote $\mathcal{RQ}^{(s,t)} = \{RQ^{(s,t)} : (RQ^{(s,t)} \otimes RQ^{(s,t)})_{st} = Q_{st}, RQ^{(s,t)} \otimes RQ^{(s,t)} \leq Q\}$. Pick one $RQ^{(s,t)}$ in each $\mathcal{RQ}^{(s,t)}, s, t \in \underline{n}$, to form \mathcal{RQ} , i.e., $\mathcal{RQ} = \{RQ^{(1,1)}, RQ^{(1,2)}, \cdots, RQ^{(n,n)}\}$, such that $A \otimes B \leq Q$ for any $A, B \in \mathcal{RQ}$. Denote \mathcal{RQ} the set of all such \mathcal{RQs} .

We now give a characterization for the existence for a square root of a given matrix over a complete lattice.

Theorem 4.1. A matrix $Q \in L^{n \times n}$ has square roots if and only if $\Re \mathfrak{Q} \neq \emptyset$. Furthermore, if $\Re \mathfrak{Q} \neq \emptyset$, then for any $\mathcal{R} \mathcal{Q} \in \Re \mathfrak{Q}$, $(\bigvee \mathcal{R} \mathcal{Q}) \otimes$ $(\bigvee \mathcal{R} \mathcal{Q}) = Q$, and all square roots of Q can be represented by $\bigvee \mathcal{R} \mathcal{Q}$.

Proof. Suppose that S is a square root of $Q \in L^{n \times n}$. For any $s, t \in n$, define $RQ^{(s,t)}$ as

$$(RQ^{(s,t)})_{ij} = \begin{cases} 0, & s \neq i \text{ and } t \neq j, \\ S_{ij}, & \text{otherwise.} \end{cases}$$

It is obvious that $RQ^{(s,t)} \leq S$ and $(RQ^{(s,t)} \otimes RQ^{(s,t)})_{st} = \bigvee_{k=1}^{n} U(S_{sk}, S_{kt}) = Q_{st}$. Then by Lemma 2.1 $RQ^{(s,t)} \otimes RQ^{(i,j)} \leq S \otimes S = Q$. Therefore $\mathcal{RQ} = \{RQ^{(s,t)}, s, t \in \underline{n}\} \in \mathfrak{RQ}$, i.e., $\mathfrak{RQ} \neq \emptyset$.

Conversely, let $\mathcal{RQ} = \{RQ^{(s,t)}, s, t \in \underline{n}\} \in \mathfrak{RQ}$. Since $(RQ^{(s,t)} \otimes RQ^{(s,t)})_{st} = Q_{st}$ and $RQ^{(s,t)} \otimes RQ^{(i,j)} \leq Q$ for any $i, j, s, t \in \underline{n}$, from Lemma 2.2 it follows that $(\bigvee \mathcal{RQ}) \otimes (\bigvee \mathcal{RQ})$

 $= (\bigvee_{RQ^{(s,t)} \in \mathcal{RQ}} RQ^{(s,t)}) \otimes (\bigvee_{RQ^{(i,j)} \in \mathcal{RQ}} RQ^{(i,j)})$ $= \bigvee_{RQ^{(s,t)}, RQ^{(i,j)} \in \mathcal{RQ}} (RQ^{(s,t)} \otimes RQ^{(i,j)})$ = Q.

Moreover, the assertion that all square roots of Q can be represented by $\bigvee \mathcal{RQ}$ has been implied in the first part of the proof. \Box

From the proof of Theorem 4.1, we can get the following theoretical way to find the square roots.

Algorithm 4.1. Finding square roots of $Q \in L^{n \times n}$. Step 1. Find $RQ^{(s,t)}$ such that $(RQ^{(s,t)} \otimes RQ^{(s,t)})_{st} = Q_{st}$. Step 2. Determine $\mathcal{RQ}^{(s,t)}$. Step 3. Construct \mathcal{RQ} and \mathfrak{RQ} . Step 4. If $\mathfrak{RQ} = \emptyset$, then Q has no square roots, otherwise $\bigvee \mathcal{RQ}$ is a square root for any

At the end of this section, we give an example to illustrate Algorithm 4.1.

 $\mathcal{RQ} \in \mathfrak{RQ}.$

Example 4.1. Let L be a complete lattice as follows.

Define a binary operation U, shown below, over L.

U	0	a	b	1
0	0	0	0	0
a	0	1	a	1
b	0	a	b	1
1	0	1	1	1

We can check U is an infinitely \lor -distributive conjunctive uninorm. Let $Q = \begin{pmatrix} a \\ b \end{pmatrix}$. Then $\mathcal{RQ}^{(1,1)} = \mathcal{RQ}^{(2,2)} = \left\{ \left(\begin{array}{cc} 0 & b \\ a & 0 \end{array} \right), \right.$ $\begin{pmatrix}
0 & b \\
0 & b
\end{pmatrix}$ b b^2 $\mathcal{RQ}^{(1,2)} = \left\{ \left(\begin{array}{cc} b & b \\ 0 & b \end{array} \right) \right\}$ $\mathcal{RQ}^{(2,1)} = \{$ $\begin{array}{c} \begin{array}{c} a & 0 \end{array} \right) & \otimes \left(\begin{array}{c} b & b \end{array} \right) \end{array} = \left(\begin{array}{c} a & 0 \end{array} \right), \\ \begin{array}{c} b \\ 0 \end{array} \right) & \otimes \left(\begin{array}{c} b & 0 \\ b & 0 \end{array} \right) \end{array} = \left(\begin{array}{c} b & 0 \\ a & 0 \end{array} \right), \\ \begin{array}{c} b \\ 0 \end{array} \right) & \otimes \left(\begin{array}{c} 0 & 0 \\ b & b \end{array} \right) \end{array} = \left(\begin{array}{c} b & b \\ 0 & 0 \end{array} \right), \\ \begin{array}{c} a \\ 0 \end{array} \right) & \otimes \left(\begin{array}{c} b & b \\ 0 & b \end{array} \right) = \left(\begin{array}{c} 0 & a \\ b & b \end{array} \right), \\ \begin{array}{c} a \\ 0 \end{array} \right) \otimes \left(\begin{array}{c} b & b \\ 0 & b \end{array} \right) = \left(\begin{array}{c} 0 & a \\ b & b \end{array} \right), \\ \begin{array}{c} a \\ 0 \end{array} \right) \otimes \left(\begin{array}{c} b & b \\ 0 & 0 \end{array} \right) = \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right),$ $a \quad 0$ $\begin{bmatrix} 0\\ a \end{bmatrix}$ $\begin{array}{c} 0 \\ b \end{array}$ 0 0 0 a0 have $\Re \mathfrak{Q} = \emptyset$. Therefore Q has no square roots.

Theorem 4.1 gives a general characterization of the existence of a square root for a given matrix over a complete lattice when U is an infinitely \lor -distributive isotonic operator. However, determining $\Re \mathfrak{Q}$ and $\mathcal{R} \mathcal{Q}$ is not easy. In the following section we try to determine $\mathcal{R} \mathcal{Q}$.

5. Determine \mathcal{RQ} while U is idempotent or a semi-uninorm

Theorem 4.1 and Algorithm 4.1 reveal that finding square roots of $Q \in L^{n \times n}$ is equivalent to determine \mathcal{RQ} when U is an infinitely \lor -distributive isotonic operator. In this section, we further assume U to be idempotent (i.e., U(x, x) = x for all $x \in L$, see [2]) or be a semi-uninorm, then determine \mathcal{RQ} under such assumptions.

For an idempotent infinitely \vee -distributive isotonic operator U, for any $s, t \in \underline{n}$, define $\mathcal{RQ}_{=}^{(s,t)} = \{RQ_{=}^{(s,k,t)} : k \in \underline{n}\},$ where $RQ_{=}^{(s,k,t)}$ is defined as: for any $i, j \in \underline{n}$,

$$(RQ_{=}^{(s,k,t)})_{ij} = \begin{cases} Q_{st}, & (s,k) = (i,j), \\ Q_{st}, & (k,t) = (i,j), \\ 0, & \text{otherwise.} \end{cases}$$

Theorem 5.1. For any $s, t \in \underline{n}$, for any $M \in \mathcal{RQ}^{(s,t)}_{=}$, if $M \leq M \circledast^l Q$, then $M \in \mathcal{RQ}^{(s,t)}$.

Proof. By the definition of $\mathcal{RQ}^{(s,t)}$, we need to prove $(M \otimes M)_{st} = Q_{st}$ and $M \otimes M \leq Q$. For any $M \in \mathcal{RQ}^{(s,t)}_{=}$, there is some $k_0 \in \underline{n}$ such that $M = RQ^{(s,k_0,t)}_{=}$, i.e., $M_{sk_0} = M_{k_0t} = Q_{st}$. Since U is infinitely \vee -distributive, we have U(0,x) =U(x,0) = 0 for any $x \in L$. Therefore $(M \otimes M)_{st} = \bigvee_{k=1}^{n} U(M_{sk}, M_{kt}) = U(M_{sk_0}, M_{k_0t}) =$ $U(Q_{st}, Q_{st}) = Q_{st}$. From $M \leq M \circledast^l Q, M \otimes M \leq$ Q holds by Corollary 3.2. Thus $M \in \mathcal{RQ}^{(s,t)}$. \Box

Take each $RQ_{=}^{(s,k_{st},t)}$, where $k_{st} \in \underline{n}$, in $\mathcal{RQ}_{=}^{(s,t)}$ to form $\mathcal{RQ}_{=}$, i.e., $\mathcal{RQ}_{=} = \{RQ_{=}^{(1,k_{11},1)}, RQ_{=}^{(1,k_{12},2)}, \cdots, RQ_{=}^{(n,k_{nn},n)}\}.$

Theorem 5.2. If $\bigvee \mathcal{RQ}_{=} \leq (\bigvee \mathcal{RQ}_{=}) \otimes^{l} Q$, then $(\bigvee \mathcal{RQ}_{=}) \otimes (\bigvee \mathcal{RQ}_{=}) = Q$.

Proof. If $\bigvee \mathcal{RQ}_{=} \leq (\bigvee \mathcal{RQ}_{=}) \circledast^{l} Q$, then Corollary 3.2 ensures that $(\bigvee \mathcal{RQ}_{=}) \otimes (\bigvee \mathcal{RQ}_{=}) \leq Q$. Now, we shall prove $(\bigvee \mathcal{RQ}_{=}) \otimes (\bigvee \mathcal{RQ}_{=}) \geq Q$. From the proof of Theorem 5.1, we know for any $RQ_{=}^{(s,k_{st},t)} \in \mathcal{RQ}_{=}, (RQ_{=}^{(s,k_{st},t)} \otimes RQ_{=}^{(s,k_{st},t)})_{st} = Q_{st}$. Then for any $i, j \in \underline{n}, ((\bigvee \mathcal{RQ}_{=}) \otimes (\bigvee \mathcal{RQ}_{=}))_{ij} = ((\bigvee RQ_{=}^{(s,k_{st},t)} \in \mathcal{RQ}_{=}))_{ij} \otimes RQ_{=}^{(s,k_{st},t)} \in \mathcal{RQ}_{=}$

 $(\bigvee_{\substack{RQ_{=}^{(s,k_{st},t)} \in \mathcal{RQ}_{=}}} RQ_{=}^{(s,k_{st},t)}))_{ij} \geq (RQ_{=}^{(i,k_{ij},j)} \otimes RQ_{=}^{(i,k_{ij},j)})_{ij} = Q_{ij}.$ Therefore $(\bigvee \mathcal{RQ}_{=}) \otimes$

 $(\bigvee \mathcal{RQ}_{=}) = Q.$

For an infinitely \lor -distributive semi-uninorm U (e is the neutral element), for any $s, t \in \underline{n}$, define $\mathcal{RQ}_e^{(s,t)} = \{RQ_e^{(s,k,t)} : k \in \underline{n}\}$ as

$$(RQ_e^{(s,k,t)})_{ij} = \begin{cases} Q_{st}, & (s,k) = (i,j), \\ e, & (k,t) = (i,j), \\ 0, & \text{otherwise}, \end{cases}$$

or

$$(RQ_e^{(s,k,t)})_{ij} = \begin{cases} e, & (s,k) = (i,j), \\ Q_{st}, & (k,t) = (i,j), \\ 0, & \text{otherwise}, \end{cases}$$

where $|\{s, k, t\}| \neq 1$ or $|\{s, k, t\}| = 1$ with $Q_{ss} = e$.

Theorem 5.3. For any $s, t \in \underline{n}$, for any $M \in \mathcal{RQ}_e^{(s,t)}$, if $M \leq M \circledast^l Q$, then $M \in \mathcal{RQ}^{(s,t)}$.

Proof. Similar to the proof of Theorem 5.1 since $U(Q_{st}, e) = U(e, Q_{st}) = Q_{st}$.

Pick one $RQ_e^{(s,k_{st},t)}$ $(k_{st} \in \underline{n})$ in each $\mathcal{RQ}_e^{(s,t)}$ to form \mathcal{RQ}_e , i.e., \mathcal{RQ}_e = $\{RQ_e^{(1,k_{11},1)}, RQ_e^{(1,k_{12},2)}, \cdots, RQ_e^{(n,k_{nn},n)}\}.$

Theorem 5.4. If $\bigvee \mathcal{RQ}_e \leq (\bigvee \mathcal{RQ}_e) \circledast^l Q$, then $(\bigvee \mathcal{RQ}_e) \otimes (\bigvee \mathcal{RQ}_e) = Q$.

Proof. Similar to the proof of Theorem 5.2. \Box

We point out here that \circledast^l in Theorems 5.1, 5.2, 5.3 and 5.4 can be replaced by \circledast^r with the help of Corollary 3.3.

In the following, we give examples to help understanding Theorems 5.2 and 5.4.

Example 5.1. Let L be a complete lattice as follows.

Consider the following binary operation U over L.

U	0	a	b	c	1
0	0	0	0	0	0
a	0	a	0	a	a
b	0	0	b	b	b
c	0	a	b	c	1
1	0	$egin{array}{c} 0 \\ a \\ 0 \\ a \\ a \end{array}$	b	1	1

We can check U is infinitely \lor -distributive, isotonic, idempotent, and has neutral element c.

Let
$$Q = \begin{pmatrix} a & 0 \\ b & 1 \end{pmatrix}$$
. Consider $\mathcal{RQ}_{=} = \{RQ_{=}^{(1,1,1)}, RQ_{=}^{(1,1,2)}, RQ_{=}^{(2,2,1)}, RQ_{=}^{(2,2,2)}\}$, where $RQ_{=}^{(1,1,1)} = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$, $RQ_{=}^{(1,1,2)} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, $RQ_{=}^{(2,2,2)} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.
Obviously, $\forall \mathcal{RQ}_{=} = \begin{pmatrix} a & 0 \\ b & 1 \end{pmatrix}$, $(\forall \mathcal{RQ}_{=}) \otimes^{l} Q = \begin{pmatrix} 1 \wedge 1 & b \wedge 1 \\ 1 \wedge b & 1 \wedge 1 \end{pmatrix} = \begin{pmatrix} 1 & b \\ b & 1 \end{pmatrix} \geq \forall \mathcal{RQ}_{=}$.
From Theorem 5.2, $\begin{pmatrix} a & 0 \\ b & 1 \end{pmatrix}$ is a square root of $\begin{pmatrix} a & 0 \\ b & 1 \end{pmatrix}$. Moreover, it is the unique square root.
Let $Q = \begin{pmatrix} c & a \\ b & c \end{pmatrix}$. Consider $\mathcal{RQ}_{e} = \{RQ_{e}^{(1,1,1)}, RQ_{e}^{(1,2,2)}, RQ_{e}^{(2,2,1)}, RQ_{e}^{(2,2,2)}\}$, where $RQ_{e}^{(1,1,1)} = \begin{pmatrix} c & 0 \\ 0 & 0 \end{pmatrix}$, $RQ_{e}^{(1,2,2)} = \begin{pmatrix} 0 & 0 \\ 0 & c \end{pmatrix}$.
Obviously, $\forall \mathcal{RQ}_{e} = \begin{pmatrix} c & a \\ b & c \end{pmatrix}$, $(\forall \mathcal{RQ}_{e}) \otimes^{l} Q = \begin{pmatrix} c \wedge 1 & a \wedge 1 \\ 1 \wedge b & 1 \wedge c \end{pmatrix} = \begin{pmatrix} c & a \\ b & c \end{pmatrix}$ is a square root of $\begin{pmatrix} c & a \\ b & c \end{pmatrix}$. Moreover, it is the unique square root.
Dividually, $\forall \mathcal{RQ}_{e} = \begin{pmatrix} 1 & 1 \\ 1 \wedge b & 1 \wedge c \end{pmatrix} = \begin{pmatrix} c & a \\ b & c \end{pmatrix}$, $(\forall \mathcal{RQ}_{e}) \otimes^{l} Q = \begin{pmatrix} c \wedge 1 & a \wedge 1 \\ 1 \wedge b & 1 \wedge c \end{pmatrix} = \begin{pmatrix} c & a \\ b & c \end{pmatrix}$ is a square root of $\begin{pmatrix} c & a \\ b & c \end{pmatrix}$. Moreover, it is the unique square root of $\begin{pmatrix} c & a \\ b & c \end{pmatrix}$. Moreover, it is the unique square root of $\begin{pmatrix} c & a \\ b & c \end{pmatrix}$. Moreover, it is the unique square root of $\begin{pmatrix} c & a \\ b & c \end{pmatrix}$. Moreover, it is the unique square root of $\begin{pmatrix} c & a \\ b & c \end{pmatrix}$. Moreover, it is the unique square root.
Let $Q = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 \end{pmatrix}$, $RQ_{e}^{(2,1,1)}, RQ_{e}^{(2,2,2)}$, where $RQ_{e}^{(1,1,1)}, RQ_{e}^{(1,1,2)}, RQ_{e}^{(2,2,2)} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, $RQ_{e}^{(2,1,1)} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $RQ_{e}^{(2,2,2)} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.
Obviously, $\forall \mathcal{RQ}_{e} = \begin{pmatrix} 1 & c \\ c & 1 \end{pmatrix}$, $(\forall \mathcal{RQ}_{e}) \otimes^{l} Q = \begin{pmatrix} 1 \wedge 1 & 1 \wedge 1 \\ 1 \wedge 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ is a square root of $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

Acknowledgment

This work was supported by National Natural Science Foundation of China (No.11171242), Scientific Research Fund of Sichuan Provincial Education Department and Research Projects of Leshan Normal University (Z1402).

References

- G. Birkhoff, *Lattice Theory*, Vol.XXXV, 3rd Ed., American Mathematical Society Colloquium Providence, RI, 1979.
- B. De Baets, Idempotent uninorms, European Journal of Operational Research 118:631-642, 1999.
- [3] B. De Baets, R. Mesiar, Triangular norms on product lattices, *Fuzzy Sets and System*s, 104:61-75, 1999.
- [4] A. Di Nola, W. Pedrycz and S. Sessa, Decomposition problem of fuzzy relations, *International Journal of General System* 10:123-133, 1985.
- [5] A. Di Nola, W. Pedrycz, S. Sessa and M. Higashi, Minimal and maximal solutions of a decomposition problem of fuzzy relations, *International Journal of General System* 11:103-116, 1985.
- [6] A. Di Nola, S. Sessa, W. Pedrycz, E. Sanchez, Fuzzy Relation Equations and Their Applications to Knowledge Engineering. Kluwer Academic Publishers, Dordrecht, London, 1989.
- [7] J. Fodor, R. Yager, A. Rybalov, Structure of uninorms, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 5:411-427, 1997.
- [8] K. H. Kim, Boolean Matrix Theory and Applications, Marcel Dekker, NewYork, 1982.
- [9] E. P. Klement, R. Mesiar, E. Pap, *Trian*gular Norms, Kluwer Academic Publishers, Dordrecht, 2000.
- [10] Martin Kutz, The complexity of Boolean matrix root computation, *Theoretical Computer Science*, 325:373-390, 2004.
- [11] H. W. Liu, Semi-uninorms and implications on a complete lattice, *Fuzzy Sets and Systems*, 191:72-82, 2012.
- [12] W. Sander, Associative aggregation operators. In T. Calvo, G. Mayor and R. Mesiar, editors, *Aggregation Operators*, Studies in Fuzziness and Soft Computing, vol. 97, Physica Verlag, Wurzburg (2002), pp. 124-158.
- [13] F. Sun, X. P. Wang, Square roots of a matrix over complete lattices based on sup-t composition, *Fuzzy Systems and Mathematics*, 25: 56-61, 2011(in Chinese).
- [14] X. P. Wang, A note on decomposition problem of fuzzy relations, *International Journal* of General System 29:783-797, 2000.
- [15] Z. Wang, J. Fang, Residual operations of left and right uninorms on a complete lattice, *Fuzzy Sets and Systems*, 160:22-31, 2009.
- [16] R. Yager, A. Rybalov, Uninorm aggregation operators, *Fuzzy Sets and Systems*, 80:111-120, 1996.