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Abstract

A preference matrix is the result of pairwise com-
parison and is a powerful method in multi-criteria
optimization. When comparing two elements, the
decision maker assigns the value from a given scale
which is a linearly ordered Abelian group (Alo-
group) to any pair of alternatives representing the
element of the preference matrix (P-matrix). The
well known multiplicative, additive and fuzzy pref-
erence matrices are generalized. Some situations
where elements of the P-matrix are missing are fo-
cused on and a general method for completing a P-
matrix with missing elements called the extension
of the P-matrix is proposed. Two important partic-
ular cases of fuzzy P-matrix with missing elements
are discussed. Some illustrative numerical examples
are given.

Keywords: Multi-Criteria Optimization, Pairwise
Comparison, Preference Matrix, Incomplete Ma-
trix, Alo-group.

1. Introduction

In various selection and prioritization processes the
decision maker(s) (DM) try to find the best alter-
native(s) from a finite set of alternatives. DM prob-
lems and procedures have been established to com-
bine opinions about alternatives related to differ-
ent DM criteria. These procedures are often based
on pairwise comparisons, in the sense that the pro-
cesses are linked to some preference values from a
given scale of one alternative over another. Ac-
cording to the nature of the information expressed
by the DM, for every pair of alternatives differ-
ent representation formats can be used to express
preferences, e.g. multiplicative preference relations,
[14], fuzzy preference relations, see [10], [13], [18],
interval-valued preference relations, [34], and also
linguistic preference relations, see [1].
In this paper pairwise comparison matrices over

an Abelian linearly ordered group (Alo-group) are
considered and, in this way, a general framework
for all the above mentioned cases is provided. By
introducing this more general setting, a consistency
measure that has a natural meaning is proposed. It
corresponds to the consistency indices presented in
the literature, see e.g. [24] and is easy to calculate it

in the additive, multiplicative and fuzzy cases. This
setting is based on the works of [6], [7], and [24].

Usually, experts are characterized by their own
personal background and experience of the problem
to be solved. Expert opinions may differ substan-
tially, some of them would not be able to efficiently
express a preference degree between two or more of
the available options. This may be true due to an
expert not possessing a precise or sufficient level of
knowledge of part of the problem, or because these
experts are unable to discriminate the degree to
which some options are better than others. In these
situations such an expert will provide an incomplete
preference matrix, see [1], [17], [34].

Usual procedures for DM problems correct this
lack of knowledge of a particular expert using the
information provided by the rest of the experts to-
gether with aggregation procedures, see [26]. In the
literature, see [35], the problem is solved by the least
deviation method to obtain a priority vector of cor-
responding the preference relation. In this paper,
a general procedure that attempts to estimate the
missing information in any of the above formats of
incomplete preference relations is put forward. This
proposal is different from the above mentioned pro-
cedures in [1], [17], [34] because the estimation of
missing values in an expert incomplete preference
matrix is done using only the preference values pro-
vided by these particular experts. By doing this,
we assume that the reconstruction of the incom-
plete preference matrix is compatible with the rest
of the information provided by the experts.

The paper is organized as follows. Some elements
of Alo-groups are summarized in Section 2. In Sec-
tion 3, preference matrices with elements from an
Alo-grup are investigated, a reciprocity and consis-
tency conditions are defined as well as inconsistency
index of the P-matrix. The priority vector for rank-
ing the alternatives is also defined. In Section 4,
a special notation for the matrix with missing ele-
ments is introduced and the concept of the exten-
sion of P-matrix with missing elements is defined.
This concept is based on a particular representa-
tion of consistent matrix and the missing elements
of the extended matrix are calculated by applying
the generalized least squares method. In Section 5,
two special cases of P-matrix with missing elements
are investigated. Here, for an n × n P-matrix the
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expert evaluates only n− 1 pairs of alternatives. In
this section, two numerical examples illustrating the
necessary and sufficient conditions for elements to
be evaluated in the P-matrix are presented. In Sec-
tion 6, some concluding considerations and remarks
are presented.

2. Abelian linearly ordered groups

In this section, some elements of Abelian linearly
ordered groups (Alo-groups) are summarized. The
content of this section is based mainly on [7], or [3].
An Abelian group is a set, G, together with an

operation � (read: operation odot) that combines
any two elements a, b ∈ G to form another ele-
ment denoted by a� b. The symbol � is a general
placeholder for a concretely given operation. The
set and operation, (G,�), satisfies the following re-
quirements known as the Abelian group axioms:

• If a, b ∈ G, then a� b ∈ G (closure).
• If a, b, c ∈ G, then (a � b) � c = a � (b � c)
(associativity).
• There exists an element e ∈ G called the iden-

tity element, such that for all a ∈ G, e � a =
a� e = a (identity element).
• If a ∈ G, then there exists an element a(−1) ∈

G called the inverse element to a such that
a� a(−1) = a(−1) � a = e (inverse element).
• If a, b ∈ G, then a� b = b�a (commutativity).

The inverse operation ÷ to � is defined for all
a, b ∈ G as follows:
a÷ b = a� b(−1).

A nonempty set G is linearly (totally) ordered un-
der the order relation ≤, if the following statements
hold for all a, b, c ∈ G:

• If a ≤ b and b ≤ a, then a = b (antisymmetry).
• If a ≤ b and b ≤ c, then a ≤ c (transitivity).
• a ≤ b or b ≤ a (totality).

The strict order relation < is defined for a, b ∈ G:
a < b if a ≤ b and a 6= b.
Let (G,�) be an Abelian group, G be linearly

ordered under ≤. (G,�,≤) is said to be an Abelian
linearly ordered group, Alo-group for short, if for all
c ∈ G: a ≤ b implies a� c ≤ b� c.

If G = (G,�,≤) is an Alo-group, then G is nat-
urally equipped with the order topology induced by
≤ and G×G is equipped with the related product
topology. We say that G is a continuous Alo-group
if � is continuous on G×G.

Because of the associative property, the operation
� can be extended by induction to n-ary operation,
n > 2. Then, for a positive integer n, the (n)-
power a(n) of a ∈ G is defined. We can extend
the meaning of power a(s) to the case that s is a
negative integer.
G = (G,�,≤) is divisible if for each positive

integer n and each a ∈ G there exists the (n)-th
root of a denoted by a(1/n), i.e.

(
a(1/n))(n) = a.

Moreover, the function ‖.‖ : G → G defined for
each a ∈ G by ‖a‖ = max{a, a(−1)} is called a
G-norm. The operation d : G × G → G defined
by d(a, b) = ‖a÷ b‖ for all a, b ∈ G is called a
G-distance. It is easy to show that d satisfies the
usual distance properties.

Example 1 Additive Alo-group
R = (] −∞,+∞[,+,≤) is a continuous Alo-group
with: e = 0, a(−1) = −a, a(n) = n.a.

Example 2 Multiplicative Alo-group
R+ = (]0,+∞[, •,≤) is a continuous Alo-group
with: e = 1, a(−1) = a−1 = 1/a, a(n) = an. Here,
by symbol • the usual multiplication is denoted.

Example 3 Fuzzy additive Alo-group
Ra=(] −∞,+∞[,+f ,≤), see [25], is a continuous
Alo-group with: a+f b = a+b−0.5, e = 0.5, a(−1) =
1− a, a(n) = n.a− n−1

2 .

Example 4 Fuzzy multiplicative Alo-group
]0, 1[m=(]0, 1[, •f ,≤), is a continuous Alo-group
with: a •f b = ab

ab+(1−a)(1−b) , e = 0.5, a(−1) =
1− a, a(n) = an

an+(1−a)n .

3. P-matrix on Alo-groups over a real
interval

Let G be an open interval of the real line R and
≤ be the total order on G inherited from the usual
order on R, G = (G,�,≤) be a real Alo-group.
We also assume that G is a divisible and continuous
Alo-group. Then G is an open interval, see [7].

The DM problem can be formulated as follows.
Let X = {x1, x2, ..., xn} be a finite set of alterna-
tives. These alternatives have to be classified from
best to worst, using the information given by a DM
in the form of pairwise comparison matrix.

The preferences over the set of alternatives, X,
may be represented in the following way. Assume
that the preferences on X are described by a pref-
erence relation on X given by an n × n matrix
A = {aij}, where aij ∈ G for all i, j = 1, 2, ..., n
indicates a preference intensity for alternative xi to
that of xj , i.e. it is interpreted as “xi is aij times
better than xj”. The elements of A = {aij} satisfy
the following reciprocity condition, see [7].

An n× n matrix A = {aij} is �-reciprocal, if

aij � aji = e for all i, j = 1, 2, ..., n, (1)

or, equivalently,

aji = a
(−1)
ij for all i, j = 1, 2, ..., n. (2)

An n× n matrix A = {aij} is �-consistent [7], if

aik = aij � ajk for all i, j, k = 1, 2, ..., n. (3)
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Here, aii = e for all i = 1, 2, ..., n, and also (3) im-
plies (1), i.e. an �-consistent matrix is �-reciprocal
(however, not vice-versa).
The following result gives a characterization of

�-consistent matrix as by the vectors of weights,
see [7].

Proposition 1 A P-matrix A = {aij} is �-
consistent if and only if there exists a vector w =
(w1, w2, ..., wn), wi ∈ G such that

wi ÷ wj = aij for all i, j = 1, 2, ..., n. (4)

If for some i, j, k = 1, 2, ..., n (3) is not satisfied we
say that P-matrix A = {aij} is inconsistent.

The inconsistency of A will be measured by the
�-mean distance of the ratio matrix W = {wi÷wj}
to matrix A = {aij}.
Let A = {aij}, w = (w1, ..., wn), wi ∈ G for all

i = 1, 2, ..., n. Denote

I�(A,w) = (
⊙

1≤i<j≤n

‖aij ÷ (wi ÷ wj)‖
)(2/(n(n−1)))

.

(5)
Now, a concept of priority vector shall be defined.
Consider the following optimization problem.

(P1) I�(A,w) −→ mine;
subject to ⊙n

k=1 wk = e,
wi ∈ G, i = 1, 2, ..., n.

If an optimal solution of (P1) exists, then the �-
consistency index of A, I�(A), is defined as

I�(A) = I�(A,w∗), (6)

where w∗ = (w∗1 , ..., w∗n) is the optimal solution of
(P1). Notice that "minimization" in (P1) is carried
out with respect to the identity element e.
An optimal solution w∗ of (P1) is called the
�-priority vector of A. In (P1),

⊙n
k=1 wk = e, is

a normalization condition reducing the number of
the priority vectors (uniqueness), on condition that
the optimal solution exists. The proof of the fol-
lowing theorem is evident and it is left to the reader.

Proposition 2 A P-matrix A = {aij} is �-
consistent if and only if

I�(A) = e.

4. P-matrix with missing elements

Usually, in many decision-making procedures, ex-
perts are capable of providing preference degrees
between any pair of given alternatives. However,
this may not be always true. A missing value can
be the result of the incapacity of an expert to quan-
tify the degree of preference of one alternative over

another. In this case he/she may decide not to guess
the preference degree between some pairs of alter-
natives. When an expert is not able to express a
particular value aij , because he/she does not have a
clear idea of how the alternative xi is better than al-
ternative xj , this does not mean that he/she prefers
both options with the same intensity. In order to
model these situations, in the following we intro-
duce the incomplete preference matrix. Here, we
use a different approach and notation compared to
e.g. [1]. On the other hand, our approach is similar
to that of [24].

Now, define the P-matrix with missing elements.
For the sake of simplicity of presentation the al-
ternatives x1, x2, ..., xn are identified with integers
1, 2, ..., n, i.e. by X = {1, 2, ..., n} we denote the set
of alternatives, n > 1. Moreover, let X ×X=X2 be
the Cartesian product of X, i.e. X2 = {(i, j)|i, j ∈
X}. Let K ⊂ X2, K 6= X2 and A be the preference
relation on K given by the (membership) function
µA : K → G, G is an Alo-group. The preference
relation A is represented by the n × n preference
matrix A(K) = {aij}K with missing elements de-
pending on K as follows

aij =
{
µA(i, j) if (i, j) ∈ K,
× if (i, j) 6∈ K.

In what follows we shall assume that each P-
matrix A(K) = {aij}K with missing elements is
�-reciprocal, i.e.

aij � aji = e for all (i, j) ∈ K.

If L ⊂ K, and L = {(i1, j1), (i2, j2), ..., (iq, jq)}
is a set of couples (i, j) of alternatives such that
there exist aij , with aij ∈ G for all (i, j) ∈ L,
then the symmetric subset L′ to L, i.e. L′ =
{(j1, i1), (j2, i2), ..., (jq, iq)} is also a subset of K,
i.e. L′ ⊂ K. By reciprocity each subset K of X2

can be represented as follows: K = L ∪ L′ ∪ D,
where L is the set of couples of alternatives (i, j)
of given preference degrees aij of the P-matrix
A(K) and D is the diagonal of this matrix, i.e.
D = {(1, 1), (2, 2), ..., (n, n)}, where aii = e for all
i ∈ X. The reciprocity property means that the
expert is able to quantify both aij and aji as well
as aii. The elements aij with (i, j) ∈ X2 - K are
called the missing elements of matrix A(K). No-
tice that the missing elements of A(K) are denoted
by symbol × ("ex"). On the other hand, the ele-
ments - preference degrees given by the experts are
denoted by aij where (i, j) ∈ K. By �-reciprocity
it is sufficient that in reality the expert will quan-
tify only the elements aij , where (i, j) ∈ L, such
that K = L ∪ L′ ∪ D. In what follows we shall
investigate two important situations of L, partic-
ularly, L = {(1, 2), (2, 3), ..., (n − 1, n)}, and L =
{(1, 2), (1, 3), ..., (1, n)}.

Now, we shall deal with the problem of finding
the values of missing elements of a given P-matrix
so that the extended matrix is as much �-consistent

36



as possible. In the ideal case the extended matrix
would become �-consistent.

Let K ⊂ X2, let A(K) = {aij}K be a P-
matrix with missing elements. The matrix Ae(K) =
{ae

ij}K called the �-extension of A(K) is defined as
follows

ae
ij =

{
aij if (i, j) ∈ K,
v∗i ÷ v∗j if (i, j) 6∈ K.

Here, v∗ = (v∗1 , v∗2 , ..., v∗n) is called the �-priority
vector with respect to K, if it is an optimal solution
of the following optimization problem

(P2) d(v,K) −→ mine ;
subject to

n⊙
j=1

vj = e,

vi ∈ G for all i=1,2,...,n.

Here, d(v,K) = (
⊙

i,j∈K

‖aij ÷ (vi ÷ vj)‖
)(1/|K|),

|K| denotes the cardinality of K. Notice, that �-
consistency index of the matrix Ae(K) = {ae

ij}K is
defined by (6) as I�(Ae(K)). Minimization in (P2)
is carried out with respect to the identity element
e.
The proof of the following proposition follows

directly from Proposition 2.

Proposition 3 Ae(K) = {ae
ij}K is �-consistent,

(i.e. I�(Ae(K)) = e) if and only if

d(v∗,K) = e.

5. Special cases of preference matrix with
missing elements

For a complete reciprocal preference n × n matrix
we need N = n(n−1)

2 pairs of elements to be eval-
uated by an expert. For example, if n = 12, then
N = 66, which is a considerable number of pairwise
comparisons. We ask that the expert would evalu-
ate only “around n”pairwise comparisons of alter-
natives which seems to be a reasonable amount. In
this section we shall investigate two important par-
ticular cases of fuzzy preference matrix with miss-
ing elements where the expert will evaluate only
n − 1 pairwise comparisons of alternatives. Here,
the approach presented in [24] is generalized. Let
K ⊂ X2 be a set of indices given by an expert,
A(K) = {aij}K be a P-matrix with missing ele-
ments. Moreover, let K = L ∪ L′ ∪ D. In fact,
it is sufficient to assume that the expert will eval-
uate only a chain of matrix elements of L, i.e.
a12, a23, a34, ..., an−1,n.

5.1. Case L = {(1, 2), (2, 3), ..., (n− 1, n)}

Here, assume that the expert evaluates n − 1
chain elements of the P-matrix A(K), i.e.

a12, a23, a34, ..., an−1,n. First, investigate the
�-extension of A(K). We derive the following
result.

Proposition 4 Let L = {(1, 2), (2, 3), ..., (n −
1, n)}, aij ∈ G with aij � aji = e for all (i, j) ∈ K,
K = L ∪ L′ ∪D, and L′ = {(2, 1), (3, 2), ..., (n, n −
1)}, D = {(1, 1), ..., (n, n)}. Then �-priority vector
v∗ =(v∗1 , v∗2 , ..., v∗n) with respect to K is given as

v∗1 =
(

n⊙
i=2

(a12 � ...� ai−1,i)
)(1/n)

, (7)

v∗i = a
(−1)
i−1,i � v

∗
i−1 for i = 2, 3, ..., n. (8)

Proof.
If (7) and (8) are satisfied, then

v∗i = ai−1,i�ai−2,i−1� ...�a1,2�v∗1 for i = 2, ..., n,

hence for all i = 1, 2, ..., n, v∗i ∈ G and
n⊙

i=1
v∗i = e.

Also,

ai−1,i = v∗i−1 ÷ v∗i for i = 2, ..., n.

Then v = (v∗1 , ..., v∗1) is an optimal solution of (P2).

As a simple consequence, we obtain the following
corollary.
Corollary 5 Let R = (]−∞,+∞[,+,≤) be an ad-
ditive Alo-group, see Example 1, i.e. � = +. Then
we obtain (7), (8) in the following form:

v∗1 = 1
n

n∑
i=2

(n− i+ 1)ai−1,i, (9)

v∗i = v∗i−1 − ai−1,i for i = 2, 3, ..., n. (10)

Example 5 Let � = +, L = {(1, 2), (2, 3), (3, 4)},
see Example 1. Let the chain evaluations be a12 =
9, a23 = 8, a34 = 5, with aij + aji = 0 for all (i, j) ∈
L, K = L ∪ L′ ∪ D. Hence A(K) = {aij}K is a
P-matrix with missing elements as follows

A(K) =


0 9 × ×
−9 0 8 ×
× −8 0 5
× × −5 0

 .

By (9), (10) we obtain +-priority vector v∗ with re-
spect to K, particularly, v∗ = (12, 3,−5,−10). By
(4) we obtain Ae(K) - +-extension of A(K) as fol-
lows

Ae(K) =


0 9 17 22
−9 0 8 13
−17 −8 0 5
−22 −13 −5 0

 ,

where, Ae(K) is +-consistent, and d(v,B(K)) = 0,
hence I+(Ae(K)) = 0. The corresponding ranking
of the alternatives is x1 > x2 > x3 > x4.

37



Also, as a simple consequence, the following corol-
lary is obtained.

Corollary 6 Let R+ = (]0,+∞[, •,≤) be a mul-
tiplicative Alo-group, see Example 2, i.e. � = •.
Then we obtain (7), (8) in the following form:

P1 = 1, Pi = Pi−1ai−1,i, for i = 2, 3, ..., n, (11)

v∗1 = (
n∏

i=1
Pi)

1
n , (12)

v∗i =
v∗i−1
ai−1,i

for i = 2, 3, ..., n. (13)

Example 6 Let � = •, L = {(1, 2), (2, 3), (3, 4)},
see Example 2. Let the chain evaluations be a12 =
4, a23 = 3, a34 = 2, with aij • aji = 1 for all (i, j) ∈
L, K = L ∪ L′ ∪ D. Hence A(K) = {aij}K is a
P-matrix with missing elements as follows

A(K) =


1 4 × ×
1
4 1 3 ×
× 1

3 1 2
× × 1

2 1

 .

By (11), (12), (13) we obtain •-priority vec-
tor v∗ with respect to K, particularly, v∗ =
(5.826, 1.456, 0.485, 0.243). By (4) we obtain Ae(K)
- •-extension of A(K) as follows

Ae(K) =


1 4 12 24
1
4 1 3 6
1

12
1
3 1 2

1
24

1
6

1
2 1

 ,

where, Ae(K) is •-consistent, and d(v,B(K)) = 1,
hence I•(Ae(K)) = 1. The corresponding ranking of
the alternatives is x1 > x2 > x3 > x4.

Corollary 7 Let Ra = (] − ∞,+∞[,+f ,≤) be a
fuzzy additive Alo-group, see Example 3, i.e. � =
+f . Then we obtain (7), (8) in the following form:

S1 = 0, Si = Si−1 + ai−1,i, for i = 2, 3, ..., n, ,
(14)

v∗1 = 3− n
4 + 1

n

n∑
i=1

Si, (15)

v∗i = v∗i−1 − ai−1,i + 0.5 for i = 2, 3, ..., n. (16)

Example 7 Let � = +f , L = {(1, 2), (2, 3), (3, 4)},
see Example 3. Let the chain evaluations be a12 =
0.9, a23 = 0.5, a34 = 0.3, with aij +f aji = 0.5 for all
(i, j) ∈ L, K = L ∪ L′ ∪D. Hence A(K) = {aij}K

is a P-matrix with missing elements as follows

A(K) =


0.5 0.9 × ×
0.1 0.5 0.5 ×
× 0.5 0.5 0.3
× × 0.7 0.5

 .

By (14), (15), (16) we obtain +f -priority vec-
tor v∗ with respect to K, particularly, v∗ =

(0.75, 0.35, 0.35, 0.55). By (4) we obtain Ae(K) -
+f -extension of A(K) as follows

Ae(K) =


0.5 0.9 0.9 0.7
0.1 0.5 0.5 0.3
0.1 0.5 0.5 0.3
0.3 0.7 0.7 0.5

 ,

where, Ae(K) is +f -consistent, and d(v,B(K)) =
0.5, hence I+f

(Ae(K)) = 0.5. The corresponding
ranking of the alternatives is x1 > x4 > x2 ∼ x3.
Here, by the symbol ∼ the same order of x2 and x3
is denoted.

We obtain also the following corollary.

Corollary 8 Let ]0, 1[m= (]0, 1[, •f ,≤) be a fuzzy
multiplicative Alo-group, see Example 4, i.e. � =
•f . Then for i = 2, 3, ..., n, we obtain (7), (8) in
the following form:

Pi = (1− a12) · ... · (1− ai−1,i)
(1− a12) · ... · (1− ai−1,i) + a12 · ... · ai−1,i

,

(17)

P = P1 · ... · Pn

(1− P1) · ... · (1− Pn) + P1 · ... · Pn
, (18)

v∗1 = (1− P )1/n

(1− P )1/n + P 1/n
, (19)

v∗i =
(1− ai−1,i)v∗i−1

(1− ai−1,i)v∗i−1 + ai−1,i(1− v∗i−1) . (20)

Formulas (17), (18), (19) and (20) can be easily cal-
culated e.g. by Excel.

Example 8 Let � = •f , L = {(1, 2), (2, 3), (3, 4)},
see Example 4. Let the chain evaluations be a12 =
0.9, a23 = 0.5, a34 = 0.3, with aij •f aji = 0.5 for all
(i, j) ∈ L, K = L ∪ L′ ∪D. Hence A(K) = {aij}K

is a P-matrix with missing elements as follows

A(K) =


0.5 0.9 × ×
0.1 0.5 0.5 ×
× 0.5 0.5 0.3
× × 0.7 0.5

 .

By (18), (19) we obtain •-priority vec-
tor v∗ with respect to K, particularly,
v∗ = (0.808, 0.318, 0.318, 0.522). By (4) we
obtain Ae(K) - •f -extension of A(K) as follows

Ae(K) =


0.5 0.9 0.9 0794
0.1 0.5 0.5 0.3
0.1 0.5 0.5 0.3

0.206 0.7 0.7 0.5

 ,

where, Ae(K) is •-consistent, and d(v,B(K)) =
0.5, hence I•f

(Ae(K)) = 0.5. The corresponding
ranking of the alternatives is x1 > x4 > x2 ∼ x3.

38



5.2. Case L = {(1, 2), (1, 3), ..., (1, n)}

Now, assume that the expert evaluates the pairs
of a given fixed element with the remaining n − 1
elements, i.e. the P-matrix A(K) is given by
a12, a13, ..., a1n. We investigate the extension of
A(K) and obtain the following result.

Proposition 9 Let L = {(1, 2), (1, 3), ..., (1, n)},
aij ∈ G with aij � aji = e for all (i, j) ∈ K, K =
L ∪ L′ ∪ D, and L′ = {(2, 1), (3, 1), ..., (n, 1)}, D =
{(1, 1), ..., (n, n)}. Then �-priority vector v∗

=(v∗1 , v∗2 , ..., v∗n) with respect to K is given as

v∗1 =
(

n⊙
i=2

a1i

)(1/n)

, (21)

v∗i = a
(−1)
1,i � v

∗
1 for i = 2, 3, ..., n. (22)

Proof.
If (21) and (22) are satisfied, then

v∗i = a1,i−1 � a1,i−2 � ...� a1,2 � v∗1 for i = 2, ..., n,

hence for all i = 1, 2, ..., n, v∗i ∈ G, moreover,

n⊙
i=1

v∗i = e,

and also

a1,i−1 = v∗1 ÷ v∗i for i = 2, ..., n.

Then v = (v∗1 , ..., v∗1) is an optimal solution of (P2).

As a simple consequence, we obtain the following
corollary.

Corollary 10 Let R = (] − ∞,+∞[,+,≤) be an
additive Alo-group , see Example 1, i.e. � = +.
Then we obtain (21), (22) in the following form

v∗1 = 1
n

n∑
i=2

a1,i, (23)

v∗i = v∗1 − a1,i for i = 2, 3, ..., n. (24)

Moreover, the extension of A(K), i.e. matrix
Ae(K) = {aac

ij }K is �-consistent.

Example 9 � = +, L = {(1, 2), (1, 3), (1, 4)}, let
the expert evaluations be b12 = 9, b13 = 8, b14 = 5,
with bij+bji = 0 for all (i, j) ∈ L, let K = L∪L′∪D.
Let B(K) = {bij}K be a P- matrix with missing
elements as follows

B(K) =


0 9 8 5
−9 0 × ×
−8 × 0 ×
−5 × × 0

 .

By (23), (24) we obtain +-priority vec-
tor w∗ with respect to K, particularly,
w∗ = (5.5,−3.5,−2.5, 0.5). By (4) we obtain
Be(K) - +-extension of B(K) as follows

Be(K) =


0 9 8 5
−9 0 −1 −4
−8 1 0 −3
−5 4 3 0

 ,

where, Be(K) is +-consistent, and d(v,B(K)) = 0,
hence I+(Be(K)) = 0. The corresponding ranking
of the alternatives is x1 > x4 > x3 > x2.

Corollary 11 Let R+ = (]0,+∞[, •,≤) be a mul-
tiplicative Alo-group , see Example 2, i.e. � = •.
Then we obtain (21), (22) in the following form

v∗1 = (
n∏

i=2
a1,i)1/n, (25)

v∗i = v∗1
a1,i

for i = 2, 3, ..., n. (26)

Moreover, the extension of A(K), i.e. matrix
Ae(K) = {aac

ij }K is •-consistent.

Example 10 � = •, L = {(1, 2), (1, 3), (1, 4)}, see
Example 2. Let the expert evaluations be b12 =
4, b13 = 3, b14 = 2, with bij•bji = 1 for all (i, j) ∈ L,
let K = L ∪ L′ ∪ D. Let B(K) = {bij}K be a P-
matrix with missing elements as follows

B(K) =


1 4 3 2
1
4 1 × ×
1
3 × 1 ×
1
2 × × 1

 .

By (25), (26) we obtain •-priority vec-
tor w∗ with respect to K, particularly,
w∗ = (2.213, 0.553, 0.738, 1.107). By (4) we
obtain Be(K) - •-extension of B(K) as follows

Be(K) =


1 4 3 2
1
4 1 3

4
1
21

3
4
3 1 2

31
2 2 3

2 1

 ,

where, Be(K) is •-consistent, and d(v,B(K)) = 1,
hence I•(Be(K)) = 1. The corresponding ranking
of the alternatives is x1 > x2 ∼ x3 > x4.

Corollary 12 Let Ra = (] −∞,+∞[,+f ,≤) be a
fuzzy additive Alo-group , see Example 3, i.e. � =
+f . Then we obtain (21), (22) in the following form

v∗1 = 1
2n + 1

n

n∑
i=2

a1,i, (27)

v∗i = v∗1 − a1,i + 0.5. for i = 2, 3, ..., n. (28)

Moreover, the extension of A(K), i.e. matrix
Ae(K) = {aac

ij }K is +f -consistent.
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Example 11 � = +f , L = {(1, 2), (1, 3), (1, 4)},
let the expert evaluations be b12 = 0.9, b13 =
0.5, b14 = 0.3, with bij +f bji = 0.5 for all (i, j) ∈ L,
let K = L ∪ L′ ∪ D. Let B(K) = {bij}K be a P-
matrix with missing elements as follows

B(K) =


0.5 0.9 0.6 0.4
0.1 0.5 × ×
0.4 × 0.5 ×
0.6 × × 0.5

 .

By (27), (28) we obtain +f -priority vector w∗ with
respect to K, particularly, w∗ = (0.6, 0, 2, 0.5, 0.7).
By (4) we obtain Be(K) - +f -extension of B(K) as
follows

Be(K) =


0.5 0.9 0.6 0.4
0.1 0.5 0.2 0.0
0.4 0.8 0.5 0.3
0.6 1.0 0.7 0.5

 ,

where, Be(K) is +f -consistent, and d(v,B(K)) =
0.5, hence I+f

(Be(K)) = 0.5. The corresponding
ranking of the alternatives is x4 > x1 > x3 > x2.

Corollary 13 Let ]0, 1[m= (]0, 1[, •f ,≤) be a fuzzy
multiplicative Alo-group , see Example 3, i.e. � =
•f . Then for i = 2, 3, ..., n we obtain (21), (22) in
the following form:

Pi =
a

1/n
1,i

a
1/n
1,i + (1− a1,i)1/n

(29)

v∗1 = P1 · ... · Pn

P1 · ... · Pn + (1− P1) · ... · (1− Pn) , (30)

v∗i = (1− a1,i)v∗1
(1− a1,i)v∗1 + a1,i(1− v∗1) . (31)

Moreover, the extension of A(K), i.e. matrix
Ae(K) = {aac

ij }K is •f -consistent.

Example 12 � = •f , L = {(1, 2), (1, 3), (1, 4)},
b12 = 0.9, b13 = 0.6, b14 = 0.4, with bij •f bji = 0.5
for all (i, j) ∈ L, let K = L ∪ L′ ∪ D. Let
B(K) = {bij}K be a P- matrix with missing ele-
ments as follows (see Example 4 and 10):

B(K) =


0.5 0.9 0.6 0.4
0.1 0.5 × ×
0.4 × 0.5 ×
0.6 × × 0.5

 .

By (29), (30), (31) we obtain •f -priority vec-
tor w∗ with respect to K, particularly, w∗ =
(0.634, 0.161, 0.536, 0.722). By (4) we obtain Be(K)
- +-extension of B(K) as follows

Be(K) =


0.5 0.9 0.6 0.4
0.1 0.5 0.143 0.069
0.4 0.857 0.5 0.308
0.6 0.931 0.692 0.5

 ,

where, Be(K) is •f -consistent, and d(v,B(K)) =
0.5, hence I•f

(Be(K)) = 0.5. The corresponding
ranking of the alternatives is x4 > x1 > x3 > x2.

6. Conclusions

In this paper we have dealt with some proper-
ties of P-matrices, particularly reciprocity and
consistency, with the entries from the Alo-group.
We have shown how to measure the grade of
consistency and also how to evaluate the pairs of
elements by values taken from the Alo-group if
some elements are missing. Moreover, we have
dealt with two particular cases of the incomplete
P-matrix, and we have proposed some special
methods for dealing with such cases. Finally, eight
numerical examples have been presented to clarify
our approach.
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