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Abstract

Conditionally firing rules have been proposed by
B. Moser and M. Navara in order to preserve nat-
ural properties that are not preserved by the usual
setting of fuzzy inference systems such as Mamdani-
Assilian rules joined to the CRI inference mecha-
nism. In this paper, we follow this direction and
show, that if the axioms are naturally modified in
order to capture the same semantic for the implica-
tive rules, we can also define conditionally firing im-
plicative rules that jointly with the Bandler-Kohout
subproduct preserve exactly the same properties.

Keywords: Conditionally firing rules, Composi-
tional Rule of Inference, Bandler-Kohout subprod-
uct, Implicative rules, Fuzzy interpolation

1. Introduction

A fuzzy inference system can be seen as a system
which derives a meaningful output from an impre-
cise input. Many kinds of fuzzy inference systems
have been studied in the literature [1, 2, 3, 4]. In
this work, we stem from probably the most favourite
ones – from the so called fuzzy relational inference
systems – which model a given fuzzy rule base by
a single fuzzy relation and the inference mechanism
by an appropriate image of a fuzzy set under the
fuzzy relation.

1.1. Fuzzy Rules

Consider two arbitrary universes X and Y . The
classes of fuzzy sets on X and Y will be denoted
by F(X) and F(Y ), respectively. The informa-
tion present in a given fuzzy rule base is contained
in pairs of input-output fuzzy sets (A1, B1), . . .,
(An, Bn), expressing that fuzzy set Bi ∈ F(Y ) is
assigned to fuzzy set Ai ∈ F(X) [5].

There exist two standard approaches to model a
given fuzzy rule base by an appropriate fuzzy rela-
tion R ∈ F(X × Y ).

The first approach consists in constructing the
fuzzy relation R̂ ∈ F(X × Y ) defined by

R̂(x, y) =
n∧

i=1
(Ai(x) → Bi(y)) (1)

where → is a fuzzy implication [6]. As stated by
Dubois et al. [7]: “In the above view, each piece of
information (fuzzy rule) is viewed as a constraint.
This view naturally leads to a conjunctive way of
merging the individual pieces of information since
the more information, the more constraints and the
less possible values to satisfy them.” This fact to-
gether with the fact that the minimum operation (as
well as other t-norms) is an appropriate interpreta-
tion of conjunction (the logical operation AND) and
residual operation is an appropriate interpretation
of implication (the logical operation IF-THEN), the
above statement leads to the conclusion that the
fuzzy relation R̂ defined by (1) is a proper model of
the following set of fuzzy rules

IF x is A1 THEN y is B1
. . .

AND
. . .

IF x is An THEN y is Bn

(2)

where Ai and Bi are predicates represented by fuzzy
sets Ai ∈ F(X) and Bi ∈ F(Y ).

The second approach to modelling a given fuzzy
rule base, initiated by a successful experimental ap-
plication by Mamdani and Assilian [8], consists in
constructing the fuzzy relation Ř ∈ F(X × Y ) de-
fined by

Ř(x, y) =
n∨

i=1
(Ai(x) ∗ Bi(y)) (3)

where ∗ is a t-norm. Obviously, the fuzzy relation
Ř can hardly be considered as a model of fuzzy rule
base (2). As mentioned above, a t-norm is an appro-
priate interpretation of conjunction, not of impli-
cation; moreover, the maximum operation disjunc-
tively aggregating all rules has nothing in common
with the logical operation AND.

We again recall the work of Dubois et al. [7]:
“It seems that fuzzy rules modelled by (3) are not
viewed as constraints but are considered as pieces
of data. Then the maximum in (3) expresses ac-
cumulation of data.” This fact together with the
known fact that the maximum operation as well as
other t-conorms are appropriate interpretations of
disjunction (the logical connective OR) [9, 10] leads
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to the conclusion that the fuzzy relation Ř defined
by (3) is a proper model of the following set of fuzzy
rules

x is A1 AND y is B1
. . .

OR
. . .

x is An AND y is Bn

(4)

It is worth mentioning that distinguishing be-
tween the conditional (IF–THEN) form of fuzzy
rules (2) and the Cartesian product (AND) form
of fuzzy rules (4) at the syntactical level is not com-
monly done, but it can be found e.g. in [11, 12].
Usually only the form (2) is considered because of
several, mainly historical, reasons and the differ-
ences are taken into account only at the semantical
level. But the differences can play a crucial role in
further implementations and, therefore, they should
be kept in mind. For the rest of this paper, the dis-
tinction between both types of rules and their se-
mantics is also crucial. For a detailed discussion on
both forms of fuzzy rules, we refer to the relevant
literature [7, 9, 10, 13].

1.2. Inference mechanisms

There are many inference mechanisms that with
help of fuzzy rules (or their models) deduce an ap-
propriate output B′ ∈ F(Y ) based on a given ob-
servation (input) A′ ∈ F(X). In this investiga-
tion, we concentrate only on fuzzy relational in-
ference systems that directly use a fuzzy relation
R ∈ F(X × Y ) as a model of fuzzy rules, and an
image of a fuzzy set under the fuzzy relation as a
model of the inference mechanism. In most cases,
one uses the direct image (sup-∗ composition),

B′ = A′ ◦ R , (5)

also called Compositional Rule of Inference (CRI)
[2] which is defined by

(A′ ◦ R)(y) =
∨

x∈X

(A′(x) ∗ R(x, y)) . (6)

Besides the CRI, another alternative we may use
is the subdirect image (inf-→ composition)

B′ = A′ ▹ R (7)

which is related to the Bandler-Kohout subproduct
(BK-subproduct) [14]. It is defined by

(A′ ▹ R)(y) =
∧

x∈X

(A′(x) → R(x, y)) . (8)

The BK-subproduct was firstly suggested as an
inference mechanism in [15] and later on, in [16],
it was shown that both inference mechanisms are
equally good. Particularly, the advantages, that
may be obtained from using one or the other in-
ference mechanism, do not come from the mecha-
nism itself, but from a proper combination of the

mechanism and an appropriate choice of a model
of fuzzy rules. If an inference mechanism provides
some advantage when connected with model Ř, the
same holds for the other inference mechanisms and
the model R̂ and vice-versa, the same holds about
disadvantages. There is no advantage that would
be preserved for any of the two above mentioned
inferences that would hold generally no matter the
choice of the fuzzy rule base model, see [16, 17].

1.3. Mathematical Background

For the rest of the paper, let us fix a complete resid-
uated lattice

⟨[0, 1], ∧, ∨, ∗, → 0, 1⟩

as the background algebraic structure [10]. In
other words, the multiplicative operation ∗ is a left-
continuous t-norm and correspondingly the fuzzy
implication → is a residual implication and they
both form an adjoint pair. Furthermore, we de-
fine the fuzzy equivallence in a standard way, i.e.,
a ↔ b = (a → b) ∧ (b → a). Specifically, wher-
ever we consider Ř or R̂, the connectives involved
in them are from residuated lattice structure. Note,
that one can find interesting works where the cho-
sen operations do not form a residuated lattice, see
[18, 19, 20].

1.4. Motivation

From the interpolation point of view, BK-
subproduct is preferred when dealing with R̂ while
CRI should be preferred for conjunctive rules Ř.
On the other hand, the most usual case is oppo-
site, particularly, most usually the CRI is com-
bined with the Mamdani rules. The reasons are
historical (both CRI and Ř were applied and thus,
spread among practitioners, much earlier and there-
fore, they became a sort of state-of-art or the “first
choice” for them) as well as practical (robustness
and also equivalence of FITA and FATI and exis-
tence of equivalent hierarchical inference structure
and thus, lower computational computational ef-
forts, see [16, 17]).

However, as it may be shown, this combination,
though generally accepted and bringing many ad-
vantages, is yet also very problematic. For exam-
ple, for many operations modeling the conjunction,
particularly, for t-norms with zero divisors, it is im-
possible to construct an intuitive and natural model
of fuzzy rules such that it ensures fuzzy interpolativ-
ity as well as meaningful conclusions [21] or reaching
extreme output values after an appropriate defuzzi-
fication. B. Moser and M. Navara approached these
problems and suggested for the combination of Ř
and CRI the so called conditionally firing rules, i.e.,
a CRI-modified inference system that focuses on the
elimination of both mentioned problems, see also
[22].

43



The problems mentioned above can be shown
to be present also for the combination of BK-
subproduct and R̂. In a similar fashion for this
combination of ▹ and R̂, conditionally firing im-
plicative rules can be proposed which forged our
motivation to propose and investigate conditionally
firing implicative rules.

2. Fuzzy Interpolation

Each inference mechanism should posses a funda-
mental property – preservation of modus ponens.
In other words, if an input fuzzy set A′ ∈ F(X) is
equal to one of the consequents, say Ai, then the
inferred output B′ ∈ F(Y ) should be equal to the
respective consequent Bi. This requirement leads to
the following systems of fuzzy relational equations

Ai@R = Bi , i = 1, . . . , n (9)

where @ ∈ {◦,▹} and R is an unknown fuzzy re-
lation on X × Y . A fuzzy relation R ∈ F(X × Y )
which satisfies (9) is called a solution of the system
and we say, that R interpolates (Ai, Bi). In such
a case, R be seen as a correct model of the given
fuzzy rule base in the given fuzzy inference system.

2.1. State-of-Art in Fuzzy Interpolation

Obviously, not all systems (9) are solvable, i.e., not
for all sets of pairs (Ai, Bi)n

i=1 there exists a fuzzy
relations that would interpolate them. The ques-
tion of solvability of such systems was addressed by
many researchers and in this Section, we recall only
the most fundamental results [23, 24, 25, 26].

Theorem 1 System (9) with @ = ◦ (@ = ▹) is
solvable if and only if R̂ (Ř) is a solution of this
system. In case of solvability, R̂ (Ř) is the greatest
(least) solution of (9) with @ = ◦ (@ = ▹) .

Theorem 1 actually states that the implicative
model R̂ (or Mamdani-Assilian model Ř) should be
the first choice whenever dealing with the inference
mechanism modelled by ◦ (or ▹, respectively). If
there exist some reasons, for example preservation
of robustness [16], computational complexity [16] or
the existence of hierarchical inference that is iden-
tical to the non-hierarchical one [16, 27], why the
combination of Mamdani-Assilian model Ř and the
CRI inference ◦ (implicative model R̂ and the BK-
subproduct inference ▹ ) should be preferred, one
should first of all check whether the interpolativity
is preserved also in this case. The answer to this
question is provided by the following theorems that
collects results from [25, 28, 29].

Theorem 2 Let all Ai, i = 1, . . . , n, be normal.
Then Ř (R̂) is a solution of (9) with @ = ◦ (@ = ▹)
if and only if the condition∨

x∈X

(Ai(x) ∗ Aj(x)) ≤
∧

y∈Y

(Bi(y) ↔ Bj(y)) (10)

holds for any i, j ∈ {1, . . . , n}.

Note that condition (10) may be very restrictive,
as shown in [21] and discussed below.

2.2. Conditionally Firing Rules

Let us recall, that B. Moser and M. Navara [21]
introduced the following three axioms for Mamdani-
Assilian rules and CRI inference.

Axiom1) For all i ∈ {1, . . . , n}

Ai ◦ Ř = Bi ;

Axiom2) For each normal input A′ ∈ F(X) there
is an index i such that

A′ ◦ Ř ̸⊆ Bi ;

Axiom3) The output A′ ◦ Ř belongs to the union
of consequents Bi of “fired rules”, i.e.,

A′ ◦ Ř ⊆
∪
i∈F

Bi

where F = {i | Supp(Ai) ∩ Supp(A′) ̸= ∅} and
(Bi ∪ Bj)(y) = Bi(y) ∨ Bj(y).

Axiom1) is the already discussed fuzzy interpola-
tion property.

Axiom2), according to [21], ensures the signifi-
cance of each output set. It implies that for each
normal input the inference mechanism provides a
significant output giving non-trivial information.

Finally, Axiom3) is a weak monotonicity of out-
puts provided that the rules are locally monotonic,
i.e., in some interval, the rules describe a monotonic
relation [21]. Note that originally, Axiom3) was a
bit different, it assumed that the inferred output
is contained in the convex hull of consequents of
fired rules. However, the authors actually proved
that the Axiom3) from this article is preserved for
the Mamdani-Assilian systems, and the fact, that it
holds also for the convex hull, is just a direct con-
sequent, see [21].

Let us recall the main results from [21].

Proposition 1 [21] Let ∗ be a t-norm without zero
divisors. Let all Ai, i = 1, . . . , n, be continuous and
normal and let Bi, i = 1, . . . , n, be fuzzy sets with
mutually different supports. Then the Mamdani-
Assilian model Ř and CRI inference ◦ do not satisfy
Axiom1) and Axiom2) simultaneously.

Proposition 2 [21] The Mamdani-Assilian model
Ř and CRI inference ◦ violate Axiom2) iff there is
an x′ ∈ X such that ∀i ∈ {1, . . . , n}

Ai(x′) ≤
n∧

j=1

∧
y∈Y

(Bi(y) → Bj(y)) . (11)
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In other words, Mamdani-Assilian with CRI is not
the best choice as it either requires a use of a t-
norm with zero divisors or, it does not allow to pre-
serve all three axioms simultaneously, apart from
very unintuitive settings such as equal supports of
all consequents fuzzy sets.

Therefore, B. Moser and M. Navara proposed the
conditionally firing rules which enables to combine
the Mamdani-Assilian model Ř and CRI in order to
satisfy Axiom1)-Axiom3) as follows:(

A′ ◦c Ř
)

(y) = σ[−1]

(
n∨

i=1
(Ci(A′) ∗ σ(Bi(y)))

)
(12)

where Ci(A′) is the degree of conditional firing of
the i-th rule and is defined as follows:

Ci(A′) =
∨

x∈X ρ(A′(x)) ∗ ρ(Ai(x))∨n
j=1

(∨
x∈X ρ(A′(x)) ∗ ρ(Aj(x))

) . (13)

Here ρ : [0, 1] → [0, 1] and σ : [0, 1] → [c, 1] with 0 ≤
c < 1 are increasing bijections with pseudoinverse
σ[−1] defined as follows

σ[−1](t) =

{
σ−1(t), if t ≥ c

0, otherwise.
(14)

Unlike in the standard firing, this degree of condi-
tional firing Ci(A′) depends on all antecedent fuzzy
sets Aj and, moreover, for a normal input A′, at
least one of values Ci(A′) equals to one.

Theorem 3 [21] Let (Ai, Bi)n
i=1 be a fuzzy rule

base, let Ai be normal, let ρ : [0, 1] → [0, 1] be any
automorphism satisfying the conditions:

Con1) “covering antecedents”:∧
x∈X

n∨
i=1

Ai(x) > 0,

Con2) “disjointness of antecedents”: ∃ c < 1 s.t.∨
x∈X

ρ(Ai(x)) ∗ ρ(Aj(x)) ≤ c, whenever i ̸= j

Con3) “significance of consequents”: for each i ∈
{1, . . . , n}, there is a yi ∈ Y satisfying

Bi(yi) >
∧
i̸=j

Bj(yi).

Then for any isomorphism σ : [0, 1] → [c, 1] the
mapping (12) satisfies axioms Axiom1)-Axiom3).

In other words, under very mild assumptions
Con1)-Con3), the CRI inference based on con-
ditionally firing Mamdani-Assilian rules satisfies
Axiom1)-Axiom3) simultaneously, which is not the
case of standard CRI and Ř without any restriction
on the used t-norm, see Proposition 1.

Moreover, the following Proposition confirms a
desirable behavior of the suggested system if one of
the rules is fired in the highest degree.

Proposition 3 [21] Under the assumptions Con1)-
Con3) and for A′ such that A′ = χx′ for some
x′ ∈ X such that Ai(x′) = 1 for some fixed i ∈
{1, . . . , n}. Then

A′ ◦c Ř = Bi . (15)

3. Conditionally Firing Implicative Rules

In this Section, we suitably modify the axioms
Axiom1)-Axiom3) so that they can express the
same what they expressed in the case of Mamdani-
Assilian rules.

3.1. Modified Axioms

Let us unfold the meanings of Axiom1)-Axiom3).
Axiom1) – the interpolativity – is unquestionable
and has to be preserved by any inference system.
Thus, also by the system with implicative rules and
the BK-subproduct.

However, in the case of implicative rules,
Axiom2)-Axiom3) no longer express the same what
they expressed in the case of Mamdani-Assilian
rules. Axiom2) expressed a sort of significance of
outputs in case of normal inputs. It was motivated
by the fact that trivial outputs are empty. But
in the case of implicative rules, trivial outputs are
those that are equal to one on the whole output uni-
verse. The more significant outputs, the lower the
membership degrees of output fuzzy sets, which is a
consequence of the logical constraint nature of the
implicative rules.

Similar situation relates to Axiom3). If a con-
junctive rule is fired in a certain degree, the inferred
output is nothing else but a cartesian product of the
respective consequent and the firing degree, which
is, obviously, a fuzzy set that is a “subset” of the
consequent. If more rules are fired, the subsethood
is preserved w.r.t. to the union of all such conse-
quents. However, in case of the implicative model,
again, the opposite assumption is natural. If an im-
plicative rule, is fired, the inferred output is a fuzzy
set obtained as respective consequent implied the
firing degree. This fuzzy set is then necessarily a
“superset” of the consequent. And again, for the
case of more fired rules, with having in mind that
these rules are conjunctively aggregated by a mini-
mum, the inferred output is greater or equal to the
intersection of all fired consequents.

Therefore, we introduce the modified axioms as
follows:

Axiom1’) For all i ∈ {1, . . . , n}

Ai ▹ R̂ = Bi ;

Axiom2’) For each normal input A′ ∈ F(X), there
is an index i such that

A′ ▹ R̂ ̸⊇ Bi ;
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Axiom3’) The output A′ ▹ R̂ contains the inter-
section of consequents Bi of “fired rules”, i.e.,

A′ ▹ R̂ ⊇
∩
i∈F

Bi

where F = {i | Supp(Ai) ∩ Supp(A′) ̸= ∅} and
(Bi ∩ Bj)(y) = Bi(y) ∧ Bj(y).

We argue, that for the combination of the BK-
subproduct ▹ and the implicative model R̂, the ax-
ioms Axiom1’)-Axiom3’) express exactly the same
desirable properties as those introduced by B. Moser
and M. Navara in [21] and [22].

Now, for the implicative rules and with the mod-
ified axiomatization, let us consider the same ques-
tions that have been addressed in [21].

Proposition 4 Let ∗ be a left-continuous t-norm
without zero divisors. Let Ai, i = 1 . . . , n be contin-
uous and normal and let Bi, i = 1, . . . , n be fuzzy
sets with mutually different supports. Then the im-
plicative model R̂ and BK-subproduct ▹ do not sat-
isfy Axiom1’) and Axiom2’) simultaneously.

Sketch of the proof: The proof is analogous to the
one of Proposition 1. For any i ̸= j∧

y∈Y

(Bi(y) ↔ Bj(y)) = 0

and thus, the following also needs to hold∨
x∈X

(Ai(x) ∗ Aj(x)) = 0 .

For a t-norm without zero divisors, the latter is
fulfilled only if the supports of antecedents Ai are
disjoint. Let us consider x′ ̸∈ Supp(Ai) for any i
and the respective singleton A′ = χx′ .

Then the proof continuous by showing that for
any y ∈ Y , the inferred output (A′ ▹ R̂)(y) is equal
to 1 and thus,

A′ ▹ R̂ ⊇ Bi

for any i which violates Axiom2’). �
Proposition 5 The implicative model R̂ and BK-
subproduct ▹ violate Axiom2’) iff there is an x′ ∈ X
such that

∀i ∈ {1, . . . , n} : Ai(x′) ≤
n∧

j=1

∧
y∈Y

(Bi(y) → Bj(y)) .

Sketch of the proof: Axiom2’) is violated if A′ ▹
R̂ ⊇ Bj for all indexes j, which occurs if and only
if ∀j, ∀y

Bj(y) ≤
∧

x∈X

(
A′(x) →

n∧
i=1

(Ai(x) → Bi(y))

)

⇐⇒ Bj(y) ≤ A′(x) →
n∧

i=1
(Ai(x) → Bi(y)) ∀x .

If the above holds for all x ∈ X, it has to hold also
for a particular x′ for which A′(x′) = 1 which af-
ter a double application of the adjunction property
proves the Proposition. �

Proposition 6 The implicative model R̂ and BK-
subproduct ▹ satisfy Axiom3’).

Sketch of the proof: For arbitrary y the inferred
output

(A′ ▹ R̂)(y)

=
∧

x∈X

(
A′(x) →

n∧
i=1

(Ai(x) → Bi(y))

)

=
∧

x∈X

(
A′(x) →

∧
i̸∈F

(Ai(x) → Bi(y))

∧
∧
i∈F

(Ai(x) → Bi(y))

)

which after some steps leads to

=
∧
i∈F

( ∨
x∈X

(A′(x) ∗ Ai(x)) → Bi(y)

)
≥
∧
i∈F

Bi(y)

which proves that A′ ▹ R̂ ⊇
∩

i∈F Bi. �

3.2. Conditionally Firing Implicative Rules
with BK-subproduct

We adopt the same assumptions for ρ, σ, σ[−1] and
c that were recalled in Section 2.2 for the Mamdani-
Assilian rules. Furthermore, we keep the same defi-
nition of degree of conditional firing of the i-th rule
given by (13).

The given setting allows us to define the condi-
tionally firing implicative rules inference based on
the BK-subproduct as follows:

(
A′ ▹c R̂

)
(y) = σ[−1]

(
n∧

i=1
(Ci(A′) → σ(Bi(y)))

)
.

(16)
Let us note, that condition Con3) from The-

orem 3 was again designed for the purpose of
Mamdani-Assilian rules. Indeed, in this type of con-
junctive rules, the significance is viewed as signifi-
cantly “high” or by the other consequents “uncov-
ered”. However, in case of implicative rules, the in-
significant constraint is provided by such a rule that
by its consequent encompass all the others. There-
fore, we again modify the original conditions Con1)-
Con3) in such a way that the modified one express
the same idea for implicative rules. The only condi-
tion that needs to be modified is Con3). However,
in order to avoid misunderstandings, we denote all
three conditions by Con1’)-Con3’) although Con1’)
and Con2’) are equivalent to the original Con1) and
Con2), respectively.

Then we can introduce the following Theorem.
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Theorem 4 Let (Ai, Bi)n
i=1 be a fuzzy rule base, let

Ai be normal, let ρ : [0, 1] → [0, 1] be any automor-
phism satisfying the conditions

Con1’) “covering antecedents”:∧
x∈X

n∨
i=1

Ai(x) > 0,

Con2’) “disjointness of antecedents”: ∃ c < 1 s.t.∨
x∈X

ρ(Ai(x)) ∗ ρ(Aj(x)) ≤ c, whenever i ̸= j

Con3’) “significance of consequents”: for each
i ∈ {1, . . . , n}, there is a yi ∈ Y satisfying

Bi(yi) <
∨
i̸=j

Bj(yi).

Then for any isomorphism σ : [0, 1] → [c, 1] the
mapping (16) satisfies axioms Axiom1’)-Axiom3’).

Sketch of the proof: Since all antecedents are nor-
mal, the denominator in (13) always equals to one
and thus,

Cj(Ai) =
∨

x∈X

ρ(Ai(x)) ∗ ρ(Aj(x))

and the corresponding output is given

(Ai ▹c R̂)(y) = σ[−1]

 n∧
j=1

(Cj(Ai) → σ(Bj(y)))

 .

For j ̸= i Con2’) implies

Cj(Ai) → σ(Bj(y)) ≥ c → σ(Bj(y)) = 1

and thus

(Ai ▹c R̂)(y) = σ[−1] (Ci(Ai) → σ(Bi(y)))
= σ[−1] (1 → σ(Bi(y)))
= σ[−1](σ(Bi(y))) = Bi(y)

which proves the preservation of Axiom1’).
In order to prove Axiom2’), it is sufficient to con-

sider the “worst” case when the input fuzzy set A′

is a singleton, i.e., A′ = χx′ for some x′ ∈ X. Ac-
cording to Con1’), at least one rule fires totally,
i.e., Ci(A′) = 1 for some i. Then it is possible to
show that (A′▹c R̂)(y) = Bi(y) which together with
Con3’) implies Axiom2’).

Preservation of Axiom3’) is proved analogously as
in the proof of Proposition 6. �

Moreover, similarly to [21], we get the following
Proposition describing a desirable behavior when
one rule fires totally.

Proposition 7 Let us make the same assumption
as in Theorem 4. Let A′ = χx′ for some x′ ∈ X
such that Ai(x′) = 1 for some fixed i. Then

A′ ▹c R̂ = Bi. (17)

Sketch of the proof:
It is possible to show that the degrees of condi-

tionally firing rules are Ci(A′) = 1 and Cj(A′) ≤ c
for j ̸= i. We obtain for all y ∈ Y

σ[−1] (Ci(A′) → σ(Bi(y)))
= σ[−1] (1 → σ(Bi(y))) = Bi(y) ,

and for j ̸= i

σ[−1] (Cj(A′) → σ(Bj(y)))
≥ σ[−1] (c → σ(Bj(y)))
= σ[−1](1) = 1

because c ≤ σ(Bj(y)) for any y, and as the mini-
mum of these fuzzy sets, A′▹c R̂ = Bi which proves
the Proposition. �

4. Concluding Remarks

The motivation for this paper comes from the fact
that very natural properties/axioms expected from
fuzzy inference systems are not often preserved
in case of the use of standard settings, e.g. in
case of the use of Mamdani-Assilian rules and the
CRI inference. This fact motivated B. Moser and
M. Navara to introduce conditionally firing rules
of the Mamdani-Assilian type that jointly with the
CRI based inference mechanism preserve the natu-
ral axioms under very mild assumptions [21].

The authors also showed that similarly to the
case of conjunctive rule, for the implicative one, the
given axioms are not preserved either. However,
this “failure” of the implicative rules is a direct con-
sequence of the fact that the provided axiomatiza-
tion was specifically determined in order to capture
the natural properties for the case of conjunctive
(Mamdani-Assilian) rules. In this paper, we modify
the axioms from [21] in such a way, that they cap-
ture precisely the same properties as the original
ones, but they are specifically designed for the im-
plicative rules. Then we define the conditionally fir-
ing implicative rules with the BK-subproduct based
inference mechanism. Analogously to the work of
Moser and Navara, we show that even these rules
preserve the given axioms under very mild condi-
tions.
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