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Abstract

Fuzzy relational compositions have been exten-
sively studied by many authors. Especially, we
would like to express studies of the fuzzy rela-
tional compositions motivated by their applica-
tions to medical diagnosis by Willis Bandler and
Ladislav Kohout. These types of compositions
use only two quantifiers: universal quantifier and
existential quantifier. There exists a huge gap be-
tween these quantifiers. This is a natural moti-
vation for studying fuzzy relational compositions
defined based on generalized quantifiers. In this
paper, we revisit and provide definitions of these
compositions as well as those of derived images
and preimages. Furthermore, we investigate their
mathematical properties.

Keywords: Fuzzy relations, Sup-T composition,
Inf-R composition, Bandler-Kohout products.

1. Introduction

Fuzzy relational compositions provide an ex-
tension of classical relational compositions and
have been firstly studied by Willis Bandler and
Ladislav Kohout between late 70’s and early 80’s.
Later on numerous researchers deeply elaborated
various aspects of fuzzy relation compositions
(see, e.g., [1, 2] and references therein). Fuzzy
relational compositions have an important role in
many areas of fuzzy mathematics, including the
formal constructions of fuzzy inference systems
[3, 4, 5, 6], medical diagnosis [7], architectures of
information processing [8] or in flexible queries to
relational databases [9, 10, 11].

This paper is a continuation of our research in
the field of fuzzy relational compositions started
in [12], where we introduced fuzzy relational
compositions with an application of generalized
(fuzzy) quantifier of type (1) determined by fuzzy
measures (see [13]) and showed several basic
properties. The paper is organized as follows.

Section 2 recalls four classical relational com-
positions that motivated by their application to
medical diagnosis then naturally extend to fuzzy
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relational compositions using suitable operations
which involves t-norms and residual implications.

Section 3 formally deals with fuzzy relational
compositions based on generalized quantifiers.
This is motivated by the fact that standard com-
positions implicitly employ the existential quan-
tifier (where just one element is enough to result
the truth) or the universal quantifier (where all
elements have to fulfill a given formula in order
to result the truth). Thus, there exists a huge
gap between these quantifiers and investigation
of compositions based on generalized quantifiers
is necessary. In this paper, we consider the quan-
tifiers such as “Most”, “Many”, or “A few” and
of a similar type.

Section 4 introduces properties of such newly
defined fuzzy relational compositions. We show,
that some of the well-known properties of fuzzy
relational compositions are preserved only in
weak form, in the case of the compositions based
on generalized quantifiers.

Finally, Section 5 introduces definitions and
properties of images and preimages of an arbi-
trary fuzzy set under fuzzy relations using gener-
alized quantifiers.

2. Relational compositions and fuzzy
relational compositions

2.1. Relational compositions

Let us consider three non-empty finite uni-
verses X, Y, and Z. Following the work of Willis
Bandler and Ladislav Kohout, for the sake of il-
lustrative nature, we can assume that X is a finite
set of patients, Y is a finite set of symptoms, Z
is a finite set of diseases.

Let R be arelation on X xY and S be a relation
on Y x Z. For the purpose of the paper we as-
sume that (z,y) € R means that a patient = has a
symptom y and similarly, (y, z) € S means that a
symptom y belongs to a disease z. Both relations
are usually at disposal because R can be easily
obtained by asking the patient or by measuring
the symptom, and S can be easily found from
medical literature. The usual diagnosis task of a
physician is to state what are the potential dis-
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eases of a given patient. From the mathematical
point of view, the desired relationship between
patients and diseases is a suitable composition of
the relations R and S. We may define a binary
relation on X X Z using a composition @ based
on the following scheme:

R cC X x Y
S - Y x Z
RQS C X X 7.

Four fundamental compositions are given as fol-
lows

RoS ={(z,2) e X x Z |
JyeY:(z,y) e R& (y,2) €S}, (1)

RaS={(x,2) e X xZ|
VyeY:(z,y) € R= (y,2) € S}, (2)

R S={(z,2) e X xZ|
VyeY:(x,y) € R< (y,2) €S}, (3)

RoS ={(z,2) e X x 7|
VyeY:(z,y) e R (y,2) € S} (4)
and are called basic (direct/circlet) composi-
tion, Bandler-Kohout (abbr. BK) subproduct,

Bandler-Kohout superproduct and Bandler-
Kohout square product, respectively.

The meaning of (x,2) € Ro S is that a patient
x has at least one symptom belonging to a disease
z and therefore, it expresses a suspicion of having
this disease, see Figure 1.

X g Z

Figure 1: Graphical illustration of three universes
and relations between their elements.

The “triangle” and square compositions (2)-(4)
provide a sort of more accurate specification or a
strengthening of the initial suspicion. The fact
that (z,2) € R < S means that all symptoms of
a patient x belong to a disease z, see Figure 2.
The fact that (z,z) € R>.S means that a patient
x has all symptoms belonging to a disease z (see
Figure 3) and the meaning of (z,z) € ROS is
that a patient = has all symptoms of the disease
z and all symptoms of the patient belong to a
disease z, see Figure 4.

Using the fact that the existential and univer-
sal quantifiers may be interpreted by the opera-

Figure 2: Graphical illustration of the Bandler-
Kohout subproduct.

Figure 3: Graphical illustration of the Bandler-
Kohout superproduct.

tions of supremum and infimum, respectively, for-
mulas (1)-(4) may be rewritten into the following
functional form:

X(RoS) (.’IJ,Z) = \/ (XR(%?J) A XS(?J,Z))’ (5)
yey

X(ras)(@,2) = N\ (xa(z,y) = xs(,2)), (6)
yey

Xae)(@,2) = \ (xr(z.y) < xs(y,2)), (7)
yey

Xros) (@, 2) = N\ (xa(z,y) < xs(,2), (8)
yey

where xg,Xxs and X(ras) denote characteris-
tic functions of relations R,S and RQS (for
@ € {o, <, >,0}), respectively. Furthermore, the
symbol A denotes the minimum, the symbol =
expresses the binary operation of the classical im-
plication and finally, the symbol < denotes the
operation of the classical equivalence.

Figure 4: Graphical illustration of the Bandler-
Kohout square product.
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2.2. Fuzzy relational compositions

Since usual symptoms such as high tempera-
ture, increased cholesterol or very high blood pres-
sure are basically vaguely specified and impre-
cisely measured, and very often some symptoms
do not clearly or necessarily belong to a given dis-
ease however, they might belong to it under some
assumptions or conditions. Therefore, the exten-
sion of the compositions for fuzzy relations was
highly desirable. Since such an extension causes
that we deal with fuzzy relations which contain
pairs of elements up to some degrees from the
interval [0,1], we have to take into account ap-
propriate operations. Basically, it is appropriate
to deal with a residuated lattice as the underly-
ing algebraic structure, and the used operations
will be left-continuous t-norms and their resid-
ual (bi-residual) implications [14]. Then, fuzzy
relational compositions can be naturally defined
based on the original definitions and using the
operations from the residuated lattice, as intro-
duced by Willis Bandler and Ladislav Kohout.

Let us fix a residuated lattice ([0, 1], A, V, %, —
0,1) as the background algebraic structure for
the rest of the paper. In other words, the multi-
plicative operation * is a left-continuous t-norm
and correspondingly the fuzzy implication — is a
residual implication, and they both form an ad-
joint pair. Furthermore, let us fix the following
notation for the set of all fuzzy sets on a given
universe: F(U) ={C |C:U —[0,1]}.

Definition 1. Let X,Y,Z be non-empty uni-
verses, and let R € F(X xY), S € F(Y x 2).
Then, the compositions o,<1,>,0 of fuzzy rela-
tions R and S are fuzzy relations on X x Z de-
fined as follows:

(RoS)(z,2) = \/ (R(z,y) x S(y,2)) ,

yey

(R<S)(x,2) = /\ (R(z,y) = S(y,2)),
yey

(R 8)(x,2) = N\ (R(x,y) « S(y,2)),
yey

(ROS)(z,2) = N (R(z,y) < S(y,2)),

yey
forallz € X and z € Z.

Since * is a t-norm, often denoted by a capi-
tal T, the sup-* composition is also called sup-
T composition. Similarly, Bandler-Kohout prod-
ucts, since being constructed with help of the
residual operation, are often called inf-R compo-
sitions.

Example 1. Let us consider the above mentioned
medical diagnosis problem with * and — to be the

Lukasiewicz operations and with fuzzy relations R
and S given as follows

Rl v | v2| ys | va
x1 | 0.9 1 0.8 0

T2 0 109|08]| 0.1
x3 0110809 0
T4 0 0 1109

S 21 29 z3 zZ4 Z5
U1 1 1 0.1 0.9 0
yo | 0.9 1 0.2 0.9 0 1
Y3 0 1 0 1 1
| 1 0 07]01]09

If we compute the standard fuzzy relational com-
positions, e.g., the sup-* composition and the
Bandler-Kohout square product:

RoS | »1 29 23 Z4 25
r1 | 0.9 09| 09 08| 1
o | 0.8 0.8 0.8 0.8 0.9
3 | 0.7 0.9 0.7 0.9 0.9
xze | 0.9 1 | 0.6 1 1

ROS | 29 z23 z4 z5
x| 010202 0 | 0.1
T | 0 0 102 01] 02
z3 | 0 0 0.1 0.1 0.1
zg | 0 0 0 | 0.1 0

we will see, that while all patients are suspicious
of having all diseases in a high degree when us-
ing o, if we want to strengthen the suspicion with
help of O, no patients is suspicious of having any
disease in a high degree anymore.

From Example 1, one can easily conclude that
the gap between the existence of a “connecting”
symptom and the requirement for all such symp-
toms is too huge to capture all situations in prac-
tice. Therefore, strengthening the suspicion given
by a simple existence by generalized quantifiers
such as “Majority”, “Many” or “A few”, seem to
be a natural step towards the higher practical ap-
plicability of the fuzzy relational compositions.

Remark 1. From Definition 1, one can note
that for x € X such that R(x,y) = 0 for all
y € Y, the composed relation (R <1 S)(z,z) =1
for any z € Z. In other words, if there is a pa-
tient with no symptoms, it is trivially true that
for any given disease, all his symptoms are re-
lated to the given disease. Similarly, for z € Z
such that S(y,z) =0 for ally € Y, the composed
relation (R> S)(x,z) =1 for allz € X.

On the other hand, in such situations (R o
S)(x,z) = 0. So, the inf-R compositions may
hardly be viewed as strengthening of the suspicion
determined by the sup-T composition if no suspi-
cion was determined. De Baets and Kerre in [1]
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approached this problem by a redefinition of the
original inf-R compositions where an existence of
joining elementy € Y (symptom) is assumed. In
this preliminary investigation we stay stuck to the
original definitions and we leave the investigation
of the later modification for further studies.

3. Fuzzy relational compositions based on
generalized quantifiers

3.1. Generalized quantifiers based on
fuzzy measures

We have recalled relational compositions and
fuzzy relational compositions and introduced a
motivation for an employment of generalized
quantifiers. Particularly, for our goal, the so
called monadic quantifiers of type (1) determined
by fuzzy measures [13] will be applied. First of
all, let us recall some basic definitions.

Definition 2. Let U = {uq,...,u,} be a finite
universe, let P(U) denote the power set of U,
and let p : P(U) — [0,1] be a normalized fuzzy
measure, i.e., a monotone mapping with p(@) =0
and p(U) = 1. We say that the fuzzy measure
W is dnvariant with respect to cardinality if the
following condition holds:

VA, B € P(U): |A| = B = u(A) = u(B)
where | - | denotes the cardinality of a set.

Example 2. The measure called relative cardi-
nality, given by

A
:urc(A) = ||U|| )

is tnvariant w.r.t. cardinality.

Example 3. Let f : [0,1] — [0,1] be a non-
decreasing mapping with f(0) = 0 and f(1) =1
then u! defined as p/ (A) = f(urc(A)) is again a
fuzzy measure that is invariant w.r.t. cardinality.

Note that all the models of linguistic evaluative
expressions [15] of the type Big and modified by
arbitrary linguistic hedge (e.g. More or less,
Very, Roughly, Extremely etc.) are fuzzy sets
on [0,1] that fulfill the boundary conditions and
thus, may be used in order to modify the original
relative cardinality.

Another fuzzy measure that is being used fre-
quently in the area of flexible query answering
systems is the following.

Example 4. The following fuzzy measure

1/2(D)_{1 'Lf /’LT’C(D)Z%

Hre 0 otherwise.

Then u%Z is a fuzzy measure on U that is in-
variant w.r.t cardinality. It is used to construct
a quantifier “at least half”.

In this paper’s framework, we will deal only
with such fuzzy measures that are created by a
modification of the relative cardinality by an ap-
propriate fuzzy set (cf., Definition 3.7 in [13]).

Definition 3. Let u be a fuzzy measure on U
that is invariant w.r.t. cardinality. A mapping
Q: F(U) — [0,1] defined by

aoy= ((/\ c<u>> *M(D)> (9)
DeP(U)\{0} ueD

is called (generalized/fuzzy) quantifier deter-
mined by fuzzy measure .

Example 5. Let us consider the following fuzzy

measures (i
1 D=U
v
D =
(D) {0 otherwise,

D=0
1  otherwise.

Then the derived quantifiers are the classical uni-
versal and existential quantifiers.

One can immediately see that formula (9) is
not very appropriate from the computational
point of view as it requires calculation over all
sets from P(U) \ {0}. However, we may use the
property of fuzzy measure being invariant w.r.t.
cardinality and show that the fuzzy quantifier
may be efficiently calculated.

Theorem 1. [12] Let Q be a fuzzy quantifier on
U determined by a fuzzy measure p that is invari-
ant w.r.t. cardinality. Then,

n

Q(C) = \/ C(uﬂ'(i)) * M({Ul, ceey ui})’ Ce ]:(U)

i=1

where 7 is a permutation on U such that

The proof can be found in [12] as well and
therefore, it is omitted.

Theorem 1 shows that the fuzzy quantifier de-
fined by Definition 3 can be equivalently ex-
pressed by means of the Sugeno fuzzy integral.
In other words, if we again apply the fuzzy mea-
sure pf = f(u,e) that is constructed from the
relative cardinality by some modifying fuzzy set
f, then we get the following equality

n

Q(C) =\ Clunm) * f(i/n)

=1

which is very easy to be calculated.

52



Remark 2. Note, that the use of Sugeno inte-
grals for a construction of generalized quantifiers
is rather standard especially in the area of flexible
queries in relational databases [16, 10].

2. Fuzzy relational compositions based
on generalized quantifiers

In this section, we follow [12] and directly apply
the above introduced theory of generalized quan-
tifiers to our problem of fuzzy relational compo-
sitions.

Using such modification, when the existential
or the universal quantifier in the definition of the
fuzzy relational compositions is replaced by the
generalized one, and the previously provided the-
oretical apparatus, we obtain the following defi-
nition.

Definition 4. [12] Let XY, Z be non-empty fi-
nite universes, let R € F(X xY), S € F(Y x Z).
Let pu be a fuzzy measure on Y that is invariant
w.r.t. cardinality, and let Q be a quantifier on
Y determined by the fuzzy measure u. Then, the
0@, <@ %, 09 compositions of fuzzy relations R
and S are fuzzy relations on X x Z defined as fol-
lows:

(Ro% 8)(z,2) =

R x,y) xSy, 2) | *u(D) |,
DeP(Y)\{@} yD

(R <9 S)(z,2) =

N R(z,y) = S(y,2) | =u(D) |,
DGP(Y \{0} yeD

(R>9 S)(2,2) =

N R(z.y) < S(y,2) | =u(D) | ,
DEP(Y N\{0} yeD

RO% S)(z,2) =

V N R(x,y) & S(y,2) | =u(D) |,

DeP(Y)\{0} yeD
forallz € X and z € Z.

Corollary 1. [12] Let Q be a quantifier deter-
mined by a fuzzy measure that is modified from
the relative cardinality by using function f. Then
forallx € X and z € Z:

(Ro? S)(z,2) =

n

\/ ((R(‘:U7yﬂ'(l)) * S(y‘/r(z)7z))

i=1

« f(i/n)),

(R<®S)(z,2) =

n

((R(x7yﬂ(i)) — S(yw(i),z)) *
i=1

R>9 8)(z,2) =

flifm)),

s

(B(@,yx(1) < SWni), 2)) * f(i/n))

0% 8)(x, 2) =

<=z

o
Il
o

where 7 is a permutation such that R(x,y)) ®

SWYn(i), 2) = R(T,Yr(it1)) ® S(Yn(iv1), 2), fori =
n—1 and for ® € {*, =, , <},

It is easy to see that the original composi-
tions are a special case of the newly defined com-
positions. Indeed, one may easily check that
RoS = Ro’S and that R<1 S = R <" S,
R>S=Rp>"Sand ROS = ROV S, using the
fuzzy measures 4”7 and ;7 provided in Example 5.

Example 6. Let us consider fuzzy relations from
Ezxample 1 and assume again the Lukasiewicz op-
erations. Furthermore, let us consider the fuzzy
set modeling the meaning of the linguistic expres-
sion Quite Roughly Big (abbr. QRBIi) which
enables us to construct a generalized quantifier
Q =“Many”. In a standard context, this fuzzy
set takes values QRBi(1/4) = 0,QRBi(2/4) =
0,QRBi(3/4) = 0.86 and QRBi(1) = 1. Then
the newly suggested fuzzy relational composition
0@ gives the following results:

RDQ S Z1 29 z23 Z4 z5
x1 | 0.06 | 0.66 | 0.2 | 0.66 | 0.1
T2 0 0.16 | 0.26 | 0.1 | 0.66
T3 0 0.26 | 0.16 | 0.06 | 0.66
4 0 0 0 0.06 | 0.86

As we may see, the composition 09 strength-
ened the original suspicion given by o but did
not strictly strengthen as by O which would re-
quire to have “All” symptoms of a given disease
and to have “All” symptoms related a given dis-
ease. The composition OF requires only “Many”
of the symptoms to have such properties and thus,
better captures the natural vagueness and fuzzi-
ness of the real-world situation which leads to a
strengthened suspicion of diseases z5 (in the case
of patients xq,x3,14) and of diseases zo,z4 (in
the case of patient x1).

4. Properties
There are many properties proved for origi-

nal classical as well as fuzzy relational compo-
sitions. The question to be answered is whether
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the same or similar properties may be valid also
for the compositions based on generalized quan-
tifiers. As we will show, the answer is partly
positive as some of the properties are preserved
only in a weak form. In this section, we recall
those properties of the newly defined composi-
tions based on generalized quantifiers that were
introduced in [12] and moreover, we provide read-
ers with new properties determined during our
recent investigation.

Theorem 2. [12] Let X,Y,Z,U be finite uni-
verses, and let R, Ry, Ry € F(X xY), 5,51,5 €
F(Y xZ)and T € F(Z x U). Furthermore, let
U, N denote the Gddel union and intersection, re-
spectively. Then,

1. Ro@: (SoQ2 T)= (Rle S) 0@z T,

2. RO®S C(R<? 9)N(R>9 ),

3. Ri C Ry = (Rl o S) - (R2 o S) and
S gs&i(ROQ Sl)g(ROQ SQ),

4. R C Ry = (Rl <@ S) D) (RQ <@ S) and
(R1 I>Q S) (RQ I>Q S)

5. (Rl URQ OQ S D (R1 OQ S) U (RQ OQ S),

6. (R1 n Rg) <]Q SO (Rl <]Q S) U (Rg <]Q S),

7. (RiURy)>P S D (R >PS)U(Ry>?9),

8. (RiNRy) o S C (R o? 8) N (Ryo® S),

9. (Rl U Rz) QQ S C (Rl <1Q S) n (RQ <1Q S),
10. (RiINRy)>PSC (R >?S)N(Ry>Q8).

Sketch of the proof: All the properties are
proved using the properties of background alge-
braic structure, i.e., using

(anb)xc=(axc)A(bxc),
(aVb)xc=(axc)V (bxc),
(and)—=c=(a—c)V(b—c),

(aVb) —=c=(a—c)A(b—c),

—(bAc)=(a—b)A

= (bVe)=(a—b)V(a— ),

(a; x c) <\/ a; * b) /\\/ a; % c),

and the antitonicity and the isotonicity of — in
its first and second argument, respectively. O

(a — o),

\/ ((ai ) A

[

Remark 3. [12] Obviously, items 5.-10. may be
also read as follows:

11. Ro® (S1US2) 2 (Ro? S1) U (Ro% Sy),
12. R>@ (Sl N SQ) (R >@ Sl) @] (R >@ 52)
15. R <]Q (51 U SQ) (R <]Q Sl) @] (R <IQ 52)
14 R OQ (Sl N SQ) (R OQ Sl) N (R OQ SQ)
15. RI>Q (SlUSQ) C (R |>Q Sl)ﬂ(R I>Q SQ)
16. R<9 (S1NSy) C (R<98)N(R<QS,).

Remark 4. It should be noted, that Theorem 2
is provided in a modified form compared to [12].
In [12], the authors have introduced the Theorem

with a mistake, particularly, items 5.-7 were mis-
takenly provided with equality instead of just an
inclusion. This correction is of course also mir-
rored in the modification of Remark 3 that is also
provided in a corrected form.

Theorem 3. Let X,Y,Z, U be finite universes,
andlet Re F(X xY),Se F(Y X Z) and T €
F(Z xU). Then,

17. Ro (S T) C (Ro9 §) @ T,

18. (R<® 8) 0@ T C R Q@ (S09T).
Sketch of the proof: Again, by using the prop-

erties of the background residuated algebraic

structure. ]

Theorem 4. Let X,Y, Z be finite universes, and

let Re F(X xY), SeF(Y xZ). Then,
19. (Ro%9 S)T = ST o®@ RT,
20. (R<9 S)T = ST @ RT,
21. (R>9 S)T = ST «Q RT,
22. (Ro9 8)T = STo®@ RT.

where RT denotes the transposition of R, i.e.,
RT(x,y) = R(y, 7).

Sketch of the proof: The proof is analogous to
the proof for standard fuzzy relational composi-
tions. 0

Lemma 1. Let Q1,Q2 be quantifiers determined
by fuzzy measures py, po, respectively, such that
H1 < H2- Then,

23. Ro®1 § C Ro?2 S,
2/. R<9' SC R« S,
25. R>91 SC R |
26. RO S C RO%: S,

Sketch of the proof: The proof is straightfor-
ward. It is sufficient to consider the monotonicity
of * and the antitonicity and the isotonicity of —
in its first and second argument, respectively. [J

One can easily see that the measure p¥ is the
smallest one, and the measure p” is the greatest
one, which together with Lemma 1 provide many
further properties of the compositions. For exam-
ple, the following property holds for the standard

compositions of fuzzy relational equations
Ra(S<T)=(RoS)«T.

Taking this into account jointly with Lemma 1,
we can get

(Ro?' S) T C(RoS)<T=R<(S<T)
and also
R<(S<T) C R4 (S<T) C R<192 (S <9 T).

Thus, we can immediately formulate further valid
property:
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27. (R0 S) T C R<9 (S <% 1T)

for arbitrary quantifiers Q1, Q2 and Q3.
Analogously, using the following facts

RO(SoT)CRp>(SoT)=(R>S)>T,
Ra(S>T)=(R<S)>T

and Lemma 1 we obtain the following properties:

28. R> (S o T)C (R 8) @ T,
29. RO(S o T) C (R>%2 9) > T,
30. R4 (S>T)C (R<® S) @ T,
3l. (R<S)>TC R« (S>9T)

for arbitrary quantifiers 1, Q2 and Q3.

5. Images and preimages of fuzzy sets
under fuzzy relations using generalized
quantifiers

Let us recall the concepts of image and preim-
age of a fuzzy set under a fuzzy relation.

Definition 5. Let R € F(X xY), and let A €
F(X). Then, the image of the fuzzy set A under
the fuzzy relation R is a fuzzy set R®7Aon'Y (for

Q@ € {o,<,>,0}) given by

(R A)(y) = \/ (A(2) x R(z,)),

zeX

(RUA) () = /\ (Alz) = R(z.y)),

zeX

(BT A)(y) = /\ (Alz) < R(z.y)),

zeX

(R A) () = N\ (Alz) & R(z.y)),

zeX
forally € Y.

Definition 6. Let R € F(X xY), and let B €
F(Y). Then, the preimage of the fuzzy set B
under the fuzzy relation R is a fuzzy set R®F B
on X (for Q € {o, <1, >,0}) given by

(R°"B)(x) = \/ (R(z,y) * B(y)),

yey

(R B)(z) = \ (R(z,y) = B(y)),

yey

(R""B)(z) = \ (R(z,y) + B(y)),

yey

(R B)(z) = /\ (R(z.y) ¢ B(y)),

yey
for all z € X.

Example 7. The meaning of the image as well
as of the preimage can be illustrated on the oblig-
atory example from medical diagnosis. Consider
a fuzzy relation R on the cartesian product of

the set of symptoms X and a set of patients Y.
Let A be a non-empty fuzzy set of special (cho-
sen/searched) symptoms from X. Then, the im-
ages provide the following meanings:

e R°TA is the fuzzy set of patients with at least
one special symptom.

o RI1A is the fuzzy set of patients with having
all special symptoms.

e RPTA is the fuzzy set of patients for whose
all symptoms are among the special ones.

o RUIA is the fuzzy set of patients having all
symptoms and no other symptoms.

The meaning of preimages could be described
analogously on the medical diagnosis example.
Here, the “query” sent to the database expressed
by a fuzzy set B € F(Y) of patients may have
the meaning of, e.g., a fuzzy set of patients living
in a neighborhood of some contamination source.
FEach patients belongs to the neighborhood up to
a certain degree, therefore B is a fuzzy set. The
preimages then provide us with specific fuzzy sets
of symptoms related to the fuzzy set of patients.
The meaning can be determined analogously to
the meaning of images and therefore, it is omit-
ted. For further applications we refer e.g. to [17].

With an analogous motivation used for the in-
troduction of fuzzy relational compositions based
on generalized quantifiers, we propose the fol-
lowing definition of the images and preimages of
fuzzy sets under fuzzy relations based on gener-
alized quantifiers.

Definition 7. Let R € F(X xY), let A € F(X),
and let @) be a quantifier on X determined by
a fuzzy measure p invariant w.r.t. cardinality.
Then, the image of the fuzzy set A under the fuzzy
relation R based on quantifier Q is a fuzzy set

R®TAonY (for @ € {o, <, >,0}) given by

(R A)(y) =

\/ (( A Alx) * R(fmy)) *M(D)> :
DeP(X)~0 x€D

(RY7 A)(y) =

V (( Alz) — R(%U)) * N(D)> )
DeP(X)\0 x€D

(R™T A)(y) =

V (( Az) R(%l/)) * #(D)> ,
DeP(X)\0 zeD

(R77 A)(y) =
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forally € Y.

Definition 8. Let R € F(X xY), let B € F(Y),
and let @ be a quantifier on Y determined by
a fuzzy measure p invariant w.r.t. cardinality.
Then, the preimage of the fuzzy set B under the
fuzzy relation R based on quantifier @Q is a fuzzy

set R9%B on X (for @ € {o,<1,>,0}) given by

(R°?B)(z) =

( N R(z.y) * B(y) | *p(D)
DE’P(Y yeD
R<‘PB

( A B(z.y) = B(y) | *u(D)
DEP(Y yeD
RDPB )z) =

( N\ R(z,y) < B(y) | = (D)
DeP(Y yeD
B)(z) =

( N R(z,y) & B(y) | = (D)
DeP(Y yeD

for all z € X.

Obviously, for computational purposes, we
may use Theorem 1 similarly to the case of com-
positions of binary fuzzy relations.

We can identify an arbitrary fuzzy set A with
the binary fuzzy relation A using a dummy object
0 for the variable to be eliminated [2] as follows

Alx) y=0
Al y) { 0 otherwise.

Due to the use of the dummy object, the im-
ages and preimages may be rewritten into the for-
mal apparatus of compositions of fuzzy relations,
namely:

(R°F A)(y) = (RT o2 A)(y),
(RY7 A)(y) = (RT =2 A)(y),
(R™7 A)(y) = (RT <9 A)(y),
(RP7 A)(y) = (RT 0? A)(y),
(R°EB)(x) = (R o B)(x),
(R*B)(x) = (R <9 B)(x),
(R*FB)(x) = (R > B)(x),
(RY7B)(x) = (R0V B)(2)

This trick enables us to adopt all the results
from the compositions, see Section 4. For ex-
ample, using the associativity property 1. from
Theorem 2 and Theorem 4, one may easily de-
rive new properties of images just by a simple
equational calculus as follows:

Q2

SO?I (ROI A) — ST oQ1 (RT o@2 A)
— (ST o@1 RT) o@2 A= (RoQ1 S)T 0@2 A=

Q2

(Ro®@ §)°" A,

Thus, in a similar manner, we may easily prove
all analogous properties of images and preimages
to those of fuzzy relational compositions recalled
and introduced in Section 4. All of them are for-
mulated in the following corollary.

Corollary 2. Let X,Y,Z be finite universes, let
A,Al,Ag € .F(X), B,Bl,BQ € f(Y), and C €
F(Z), and let R,R1,Ry € F(X xY), and S €
F(Y xZ). Furthermore, let U,N denote the Gédel
union and intersection, respectively. Then,

27, S°7 (BT A) = (Ro@ §)°1 A,
28. B2 (8°°C) = (Ro% 8)°%°C,
29. RO7 A C (RP7 A)N (R<Q A),

30. RO? B C (R9?B) N (R®F B),
91. Ry C Ry = RT AC R A and
By C Ay = R°T A} C R°T Ay,
92. R\ C Ry = R"B C RS*B and
By C By = R°F By C R°F By,
93. RiC Ro= R AC RS A and
Ay C Ay = RS Ay D RT A,
9. Ry C Ro= RSPB D RIPB and
By C By = RY*B; C RI*B,,
95. RiC Ry = R°TAD RYT A and
Ay C Ay = RPT Ay C RPT A,
9. R C Ry = R°"B C RSP B and
By C By= R°?B; D RDgB%
37. (31 URy)TAD (RT?A) (RS A) and
T (41U A) 2 (R A) U (R Ag),
38. (R1 URy)°EB D PB) U (Ry” B) and
R°? (B UBg) D (R°F By) U (R°F By),
39. (R1 A R2)*FAC (R A)n (RS A) and
°F (4, mAg) C %Al) N (R°7 Ay),
C P
C (R°F
-

’;Ubd

R
Ry
RO

40. (31 N Ry)°% B)N (R;gB) and

(R°
(
(
(R,
( o
(
R°? (BlﬂBg) (R°F 1) N N (R°F By),

M. (R0 Ro)TAC (R f ) (RS A) and
R7 (A1 N Az) 2 (R Ay) U (BT A),
42. (RmRQ)%B;( R B)U (R2§B) and
R<? F(B1N Bg) C (R<‘PB1) (R<‘PB2),
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43. (RluRg PAD (R A)U RS A) and
9P (A1 UAy) C <R<, A1> N (R Ay),

44 (RluRQ)% C(R qu) (RS* B) and
R? (BluBz)g(R%Bl) U (R<? By),

45, (RyUR)PTAC (BT )N N (RET A) and
RPY (A1UA2);(R> Al) (R>QA2)

46. (31UR2)>p O (RYPB)U (RQ”B) and
R>? P(B1UBg) C (R‘>PB1) (R‘>PB2),

. (RlﬂRg)DQ AD(RET AU (R,E?A) and
(Al ﬂAg) - (ﬁRI> Al) (RD AQ)

48. (Rng) PBC(RlPB) (R2PB) and
R>? P(B1NBg) 2 (R'>PB1) (R'>PB2).

Sketch of the proof: The corollary exhaus-
tively uses the above introduced equational
calculus and the above proved properties of the
compositions. O

6. Conclusions

We have recalled classical and fuzzy relational
compositions. Furthermore, we followed initial
definition of compositions based on generalized
quantifiers that is very common in fuzzy rela-
tional databases due to its potential to fill in a
huge gap between compositions (or queries, in
the database applications) based on the existen-
tial quantifier and the universal quantifier.

These quantifiers allow us to define fuzzy
relational compositions with help of linguisti-
cally very natural quantifiers such as “A Few”,
“Many”, "Majority” or "Most” and provide
us with a wider choice for such fuzzy relational
compositions that may better fit for each partic-
ular practical problem. We followed [12] in inves-
tigating the preservation of desirable properties
that hold in the case of standard fuzzy relational
compositions. An exhaustive list of properties is
provided for compositions as well as of derived
images and preimages. This gives a huge poten-
tial to employ the fuzzy relational compositions
based on generalized quantifiers in many other
areas of application, such as inference systems,
where fuzzy relational compositions play a cru-
cial role.

Fuzzy relation compositions have been defined
using monadic quantifiers of type (1) determined
by fuzzy measures, it means that no restriction,
e.g., on symptoms in Example 1, is assumed.
Nevertheless, we can image situations when a re-
striction could be desirable, e.g., the importance
of symptoms may vary in different countries.
Therefore, it seems to be reasonable to extend
fuzzy relation compositions using monadic quan-
tifiers of type (1,1) determined by fuzzy mea-
sures (see, e.g., [18, 19, 20]). The study of fuzzy

relational compositions based on the type (1,1)
quantifiers is a subject of our future research.
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