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Abstract

For each single-parameter Gini social evaluation
function, and by using the dual decomposition of
the OWA operators, we derive two contributing fac-
tors. The �rst one, the self-dual core that can be
considered as a positional measure, similar to the
mean. The second one, the anti-self dual remain-
der, that we will prove is an equality measure with
balanced sensitivity to both tails.
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1. Introduction

In the literature, there exist families of social evalu-
ation functions which are de�ned in order to repre-
sent ethical orderings of alternative distributions of
income, or some other social or economic variables,
among individuals.
Following the Atkinson -Kolm -Sen (AKS)

[2][13][17] approach, for each family of social evalua-
tion functions it may be considered the correspond-
ing family of inequality measures. In fact, each so-
cial evaluation function can be decomposed into two
contributing factors, the mean of the distribution
and the corresponding inequality measure.
Aristondo et al. [1] propose an alternative to the

AKS decomposition of some particular welfare func-
tions by using the dual decomposition of the OWA
operators introduced by García-Lapresta and Mar-
ques Pereira [8]. Here, we do a similar exercise. We
focus on the single-parameter Gini social evaluation
functions. For each of these functions, and by using
the dual decomposition of the OWA operators, we
derive two contributing factors. The �rst one, the
self-dual core that can be considered as a positional
measure, similar to the mean. The second one, the
anti-self-dual remainder, which we will prove is an
equality measure with balanced sensitivity to both
tails. In fact, this equality measure is consistent
with two properties, the up-down positional trans-
fer sensitivity and the symmetric positional transfer
sensitivity principles.

The paper is organized as follows. Section 2 re-
views the dual decomposition of an OWA operator
due to Garca-Lapresta and Marques Pereira (2008).
Section 3 introduces the single-parameter Gini so-
cial evaluation family and reviews its main prop-
erties according the traditional AKS [2][13][17] de-
composition. In Section 4 we work out the dual
decomposition of these particular social evaluation
functions and we establish the main properties of
the two contributing factors, and Section 5 con-
cludes.

2. The dual decomposition of an OWA
operator

We assume throughout that variables are drawn
from an interval [0; x�] which is a compact sub-
set of R: Points in [0; x�]n will be denoted by
means of boldface characters: x = (x1; : : : ; xn) ,
1 = (1; : : : ; 1) , 0 = (0; : : : ; 0) . For
x 2 [0; x�], we have x � 1 = (x; : : : ; x) . Given
x;y 2 [0; x�]n , by x � y we mean xi � yi
for every i 2 f1; : : : ; ng ; by x > y we mean
x � y and x 6= y. Given x 2 [0; x�]n, with
(x(1); : : : ; x(n)) we denote the increasing ordered
version of x, i.e., x(i) is the i-th lowest number of
fx1; : : : ; xng. Moreover, x(1) = minfx1; : : : ; xng
and x(n) = maxfx1; : : : ; xng . Given a per-
mutation on f1; : : : ; ng , i.e., a bijection
� : f1; : : : ; ng �! f1; : : : ; ng , with x� we
denote (x�(1); : : : ; x�(n)) .
We begin by de�ning standard properties of real

functions on [0; x�]n.1

De�nition 1 Let A : [0; x�]n �! R be a function.

1. A is idempotent if for every x 2 [0; x�]:

A(x � 1) = x:

2. A is symmetric if for every permutation � on
f1; : : : ; ng and every x 2 [0; x�]n:

A(x�) = A(x):

1For further details the interested reader is referred to
Fodor and Roubens [7], Calvo et al. [4], Beliakov et al. [3],
García-Lapresta and Marques Pereira [8] and Grabisch et al.
[10].
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3. A is monotonic if for all x;y 2 [0; x�]n:

x � y ) A(x) � A(y):

4. A is strictly monotonic if for all x;y 2 [0; x�]n:

x > y ) A(x) > A(y):

5. A is compensative if for every x 2 [0; x�]n:

x(1) � A(x) � x(n):

6. A is self-dual if for every x 2 [0; x�]n:

A(x� � 1� x) = x� �A(x):

7. A is anti-self-dual if for every x 2 [0; x�]n:

A(x� � 1� x) = A(x):

8. A is invariant for translations if for all t 2 R
and x 2 [0; x�]n:

A(x+ t � 1) = A(x)

whenever x+ t � 1 2 [0; x�]n.
9. A is stable for translations if for all t 2 R and
x 2 [0; x�]n:

A(x+ t � 1) = A(x) + t

whenever x+ t � 1 2 [0; x�]n.

De�nition 2 Consider the binary relation < on
[0;1)n de�ned as

x < y ,
nX
i=1

xi =

nX
i=1

yi and

kX
i=1

x(i) �
kX
i=1

y(i) for every k 2 f1; : : : ; n�1g

The relations � and � are derived from � in the
usual way.

1. A is strictly S-convex if for all x;y 2 [0; x�]n:

x � y ) A(x) > A(y):

2. A is strictly S-concave if for all x;y 2 [0; x�]n:

x � y ) A(x) < A(y):

3. A is S-convex if for all x;y 2 [0; x�]n:

x < y ) A(x) � A(y):

4. A is S-concave if for all x;y 2 [0; x�]n:

x < y ) A(x) � A(y):

In this paper we will use also the following de�n-
ition

De�nition 3 A function A : [0; x�]n �! [0; x�] is
called a n-ary aggregation function in [0; x�]n if it
is monotonic and satis�es A(0) = 0 and A(x� �
1) = x�. An n-ary aggregation function is said to
be strict if it is strictly monotonic.

For the sake of simplicity, the n-arity is omitted
whenever it is clear from the context.
The following de�nition will play an important

role in our paper.

De�nition 4 Let A : [0; x�]n �! [0; x�] be an ag-
gregation function. The aggregation function A� :
[0; x�]n �! [0; x�] de�ned as

A�(x) = x� �A(x� � 1� x)

is called the dual of the aggregation function A.

Clearly, an aggregation function A is self-dual if
and only if A� = A:
By taking into account García-Lapresta and Mar-

ques Pereira [8], and García-Lapresta et al. [9], the
following result is straightforward.

Proposition 1 Let A : [0; x�]n �! [0; x�] be an
aggregation function. The dual A� inherits from the
aggregation function A the properties of continuity,
idempotency (hence, compensativeness), symmetry,
strict monotonicity, self-duality, and stability for
translations, whenever A has these properties. In
addition, A� is S-convex (resp. S-concave) when-
ever A is S-concave (resp. S-convex).

We follow the proposal of the dual decomposi-
tion of an aggregation function into its self-dual
core and associated anti-self-dual remainder, due to
García-Lapresta and Marques Pereira [8], in order
to propose a similar decomposition for an aggrega-
tion function in our context. For this, �rst we need
a previous de�nition of the so-called self-dual core
and of the anti-self-dual remainder of an aggrega-
tion function A.

De�nition 5 Let A : [0; x�]n �! [0; x�] be an ag-
gregation function. The function bA : [0; x�]n �!
[0; x�] de�ned as

bA(x) = A(x) +A�(x)

2
=
A(x)�A(x� � 1� x) + x�

2

is called the core of the aggregation function A.

De�nition 6 Let A : [0; x�]n �! [0; x�] be an ag-
gregation function. The function eA : [0; x�]n �! R

de�ned as eA(x) = A(x)� bA(x) , that is
eA(x) = A(x)�A�(x)

2
=
A(x) +A(x� � 1� x)� x�

2
;

is called the remainder of the aggregation function
A.
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From these de�nitions, clearly, every aggregation
function A decomposes additively A = bA+ eA into
two components: the self-dual core bA and the anti-
self-dual remainder eA, where only bA is an aggrega-
tion function. Notice that the anti-self-dual remain-
der of an aggregation function A is not an aggrega-
tion function: Clearly eA(0) = eA(x� � 1) = 0 ;which
violates the boundary conditions and implies thateA is either non monotonic or everywhere null.
The following two propositions state the prop-

erties inherited respectively by the self-dual core
and the anti-self-dual remainder of an aggregation
function A. The results are established in García-
Lapresta and Marques Pereira [8], and García-
Lapresta et al. [9].

Proposition 2 The self-dual core bA is a self-dual
aggregation function which inherits from the ag-
gregation function A the properties of continuity,
idempotency (hence, compensativeness), symmetry,
strict monotonicity, and stability for translations,
whenever A has these properties.

Proposition 3 The anti-self-dual remainder eA is
anti-self-dual and inherits from the aggregation
function A the properties of continuity, symmetry,
plus also S-convexity and S-concavity, whenever A
has these properties.

The next proposition is related to two more prop-
erties of the anti-self-dual remainder based directly
on the de�nition eA = A� bA and the corresponding
properties of the self-dual core (see García-Lapresta
and Marques Pereira[8]).

Proposition 4 Let A : [0; x�]n �! [0; x�] be an
aggregation function.

1. If A is idempotent, then eA(x �1) = 0 for every
x 2 [0; x�].

2. If A is stable for translations, then eA is invari-
ant for translations.

We now turn to examine the self-dual decomposi-
tion of an important class of continuous aggregation
operators, the OWA operators introduced by Yager
[18]. For this class of aggregation operators, the ag-
gregated value is obtained as a weighted average of
the ordered x coordinate values.

De�nition 7 Given a weighting vector w =
(w1; :::; wn) 2 [0; 1]n satisfying

Pn
i=1 wi = 1; the

OWA operator associated with w is the aggregation
function Aw : [0; x

�]n ! [0; x�] de�ned as

Aw(x) =
nX
i=1

wix�(i)

where � is a permutation of f1; : : : ; ng such that
x�(1) � � � � � x�(n):

Proposition 5 For every w = (w1; :::; wn) 2
[0; 1]n satisfying

Pn
i=1 wi = 1; ; the OWA opera-

tor Aw is idempotent (hence, compensative), sym-
metric, monotonic, and stable for translations. In
addition, Aw is S-convex whenever w1 � � � � � wn
and S-concave whenever w1 � � � � � wn:

Proposition 6 For every w = (w1; :::; wn) 2
[0; 1]n satisfying

Pn
i=1 wi = 1; ; the dual of the

OWA operator Aw is the aggregation function A�w
given by

A�w(x) =
nX
i=1

wn�i+1x�(i)

Notice that A�w is also an OWA operator ful�lling
A�w(x) = Aw�(x) where w

�
i = wn�i+1:

Proposition 7 For every w = (w1; :::; wn) 2
[0; 1]n satisfying

Pn
i=1 wi = 1; ; the dual A�w

is idempotent (hence, compensative), symmetric,
monotonic, and stable for translations. In addition,
A�w is S-concave whenever w1 � � � � � wn and S-
convex whenever w1 � � � � � wn:

García-Lapresta and Marques Pereira [8] apply
the dual decomposition to these type of aggregation
operators, and analyze some properties inherited by
the self-dual core bAw and the anti-self-dual remain-
der eAw. By following García-Lapresta et al. [9] we
have that eAw; inherits S-convexity (or respectively
S-concavity) from Aw;whenever Aw has this prop-
erty. Since S-convexity (or respectively S-concavity)
has to do with a natural property for an inequality
(or respectively equality) measure, we will show in
the next section that, for a particular class of OWA
operators, eAw can be considered as a form of equal-
ity measure.

3. The single-parameter Gini social
evaluation functions

An income distribution for a population consist-
ing of n identical individuals (n � 2) is a list
x =(x1; :::; xn), where xi is the income of individual
i. We assume throughout that incomes are drawn
from an subset D of R. Let � (x) be the mean of
x 2 Dn � Rn, that is � (x) =

Pn
i=1 xi=n.

The object of welfare comparisons between two
such distributions is to be able to say that one at-
tains more or less social welfare than the other.
More speci�cally, we wish to de�ne a social eval-
uation function Wn : D

n ! R which associates to
every distribution a real number Wn (x) that rep-
resents the social welfare attained in income distri-
bution x 2 Dn. When Wn (x) � Wn (y), then we
will say that distribution x is at least as good as
distribution y.
To evaluate social welfare, obviously, we have to

take into consideration not only the level of income
but also the inequality in the income distribution.
Because inequality and the income level enter as
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separate arguments into judgments of social well-
being, it is reasonable for a welfare function to be
decomposable into both arguments.
For this, it would be helpful to de�ne an inequal-

ity index In : Dn ! R which associates to every
distribution a real number In (x) that represents
the inequality in the income distribution x 2 Dn.
When In (x) � In (y), then we will say that distri-
bution x is at least as unequal as distribution y.
Some properties will be proposed for these func-

tions.
A simple and intuitive justi�cation for a particu-

lar property in this �eld is that it is reasonable to
regard as more equal, and hence more socially de-
sirable, a distribution which can be obtained from
another by a richer person giving a part of his in-
come to a poorer one, without changing the income
position of individuals in the society. Such a type
of transfer is referred to as a rank preserving pro-
gressive transfer.
Hardy et al.[11] prove that the necessary and suf-

�cient condition of x � y; according to de�nition 2,
is that income distribution x can be derived from
income distribution y by a sequence of progressive
transfers which are rank preserving (see also Fields
and Fei, [6]). Consequently and according to Def-
inition 2, it would be reasonable for a social eval-
uation function Wn to be strictly S-concave, that
is, Wn increases under a rank preserving progres-
sive transfer. This property is known as the trans-
fer principle. Whenever S-concavity is assumed in-
stead of strictly S-concavity, Wn satis�es symmetry
along with a weaker version of the transfer principle.
This version states that the level of social evaluation
function does not decrease under a rank preserv-
ing progressive transfer. In turn, for an inequality
measure In it would be reasonable to be strictly S-
convex or respectively S-convex. In this paper we
will assume the weaker version of the transfer prin-
ciple.
The following two de�nitions formally state when

a function is considered as a measure of social eval-
uation and respectively of inequality.

De�nition 8 A function Wn : Dn �! R is
called a social evaluation function if it is monotonic
and S-concave. Moreover, Wn is called unit-
translatable if is stable for translations.

De�nition 9 A function In : D
n �! R is called

an inequality measure if it is S-convex and satis�es
In(x �1) = c for every x 2 D and a constant c 2 R
Moreover, In is said to be absolute if it is invariant
for translations.

Because equality in the distribution is directly
related to inequality, sometimes instead of an in-
equality index, it would seem reasonable to de-
�ne an equality index En : Dn ! R; which as-
sociates to every distribution a real number E (x)

that represents the equality in the income distribu-
tion x 2 Dn: Obviously, the properties that charac-
terized an equality index are the same as those in
De�nition 9 but for S-convexity, which in this case
would be S-concavity. Formally,

De�nition 10 A function En : Dn �! R is called
an equality measure if it is S-concave and satis�es
En(x �1) = c for every x 2 D and a constant c 2 R
Moreover, En is said to be absolute if it is invariant
for translations.

An index of inequality is called ethical if it im-
plies, and is implied by, a social evaluation function.
Particularly, for each family of unit-translatable so-
cial evaluation functions we may consider the cor-
responding family of absolute inequality measures.
Following the AKS [2][13][17] approach, the ab-
solute index of inequality for a social evaluationWn,
is given by

In(x) = � (x)�Wn(x): (1)

If we de�ne the corresponding equality mea-
sure as En(x) = �In(x) , it holds that
Wn(x) = � (x) + En(x)
In this section, we will focus on the family of the

single-parameter Gini social evaluation functions,
the S-Gini family, (see Donaldson and Weymark [5],
and Yitzhaki[19]), de�ned for every x 2 Dn as

W�(x) =
nX
i=1

 �
n� i+ 1

n

��
�
�
n� i
n

��!
x�(i)

(2)
with � � 1; where � is a permutation of f1; : : : ; ng
such that x�(1) � � � � � x�(n):2
This social evaluation function on Dn; W�; treats

individuals symmetrically. More precisely, if � is
any permutation of f1; : : : ; ng such that x�(1) � � �
� � x�(n) then income distribution y that results
from x; under this permutation, has the same level
of social welfare.
Let Yn be the correponding rank-ordered income

distributions subset of Dn. Suppose thatW� is �rst
de�ned on Yn: Then the assumption that W� treats
individuals symmetrically, allows us to extend it
uniquely to the entire subset Dn. For convenience,
we shall restrict our attention to the subset Yn.
In the traditional decomposition of this family,

and according to Eq. (1), the corresponding ab-
solute index of inequality is given by I�(x) = �(x)�
W�(x):

2 In Donaldson and Weymark [5] Dn coincides with Rn

and incomes aredecreasingly ordered, that is W�(x) =Pn
i=1

��
i+1
n

��
�
�
i
n

���
x�0(i) , where �0 is a permutation

of f1; : : : ; ng such that x�0(1) � � � � � x�0(n) . They prove
that the S-Gini functions are unchanged when the popula-
tion is replicated, income by income. This property allows
us to rank all the income distributions, independently of the
size of the population. Hence, it can be considered that the
domain of every W� in Eq. (2) is Y = [

n�2
[0; x�]n; that is,

the set of all income distributions for every population of size
n � 2:
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If � = 1; W1 is the utilitarian rule with
W1(x) =

1
n

Pn
i=1 xi = �(x): The corresponding

absolute index of inequality is I1(x) = 0: If � = 2;
we have the Gini social evaluation function,W2; and
its corresponding absolute inequality index is given
by I2(x) = �(x) � W2(x): If � = 1; W1(x) =
lim
�!1

W�(x) = x1 = min
i
fxig ; the maximin rule.

The corresponding absolute index of inequality is
I1(x) = �(x)�min

i
fxig :

Hence, it can be observed that the distributional
sensitivity of a social evaluation function W� in-
creases as � increases from 1 to plus in�nity. For
every � � 1; W� is S-concave and therefore satis�es
the transfers principle. As mentioned before, this
principle states that any rank preserving progressive
transfer increases social welfare (and decreases in-
equality). The next question we can ask is whether
the size of this positive impact depends on the loca-
tion where this transfer takes place. If the answer is
yes, it may be the case that the lower this transfer
is applied, the better it is. This is the idea behind
positional transfer sensitivity principle, introduced
and analyzed by Mehran [15] and Kakwani [12]3 .
Formally, this principle is depicted in the next def-
inition.
For a function f : Yn �! R and x 2Yn; let

�ft (�; �;x) represents the change in f resulting
from a transfer � from the individual t + � to the
individual t which leaves all individual-ranks in the
distribution of x unchanged.

De�nition 11 A social evaluation function W :
Yn �! R (respectively and inequality function I)
satis�es the positional transfer sensitivity principle,
if for any x 2Yn; �; � > 0; and any pair of individu-
als i; j such that i < j; �Wi (�; �;x) � �Wj (�; �;x)
(�Ii (�; �;x) � �Ij (�; �;x)).

In Mehran [15] it can be seen that the positional
transfer sensitivity principle is satis�ed by the S-
Gini family if and only if � � 2.

4. The dual decomposition of the
single-parameter Gini social evaluation
functions

In this section we assume that incomes are drawn
from a compact subset [0; x�] of R, but we can also
apply this analysis to any bounded variable such as
literacy, health status or nutritional intake. Notice
that in this context the set Dn de�ned in the above
section coincides with [0; x�]n and Yn is the corre-
sponding set of increasingly rank-ordered incomes
distributions. Moreover, from De�nition 7, any so-
cial evaluation function W� in Eq.(2) is an OWA
operator.
We can apply the dual decomposition of an OWA

operator analyzed in García-Lapresta and Marques
3Positional transfer sensitivity property is the positional

version of the diminishing transfer sensitivity property in
Kolm [14].

Pereira[8] to every single-parameter Gini social eval-
uation function W� in Eq.(2):4

Denoting

w�i =

�
n� i+ 1

n

��
�
�
n� i
n

��
;

bw�i =
w�i + w

�
n�i+1
2

and ew�i = w�i � w�n�i+1
2

we obtain that the corresponding self-dual core cW�

and the anti-self-dual remainder fW� for every x 2
Yn; can be respectively written as

cW�(x) =
nX
i=1

bw�i xi and fW�(x) =
nX
i=1

ew�i xi: (3)

Notice that cW� is an OWA operator ful�lling
that cW� = A bw for every i 2 f1; : : : ; ng: How-
ever, the anti-self-dual remainder fW� veri�es thatfW� (0) = fW�(x

� 1) = 0 which implies that fW� is
not an aggregation operator.
The following two propositions state the proper-

ties inherited respectively by self-dual core cW� and
anti-self-dual remainder fW�; and they will allow us
to interpret both functions as two di¤erent con-
tributing factors of the social evaluation function
of a particular society.

Proposition 8 For every single-parameter Gini
social evaluation function W� de�ned as in Eq.(2)
with � � 1, the self-dual core of W�; cW�; is idempo-
tent (hence, compensative), symmetric, monotonic,
and stable for translations.

Hence, for every x 2Yn, self-dual core cW� (x) de-
pends of the overall average of the coordinates of
x and it is independent of the speci�c distribution
of these coordinates, it can be considered as a posi-
tional measure of the income distribution x.

Proposition 9 For every single-parameter Gini
social evaluation function W� de�ned as in Eq.(2)
with � � 1; the anti-self-dual remainder of W�; fW�;
is invariant for translations. Moreover,

1. fW�(x � 1) = 0 for every x 2 [0; x�],
2. fW�(x) � 0 for every x 2Yn and fW� is S-
concave.

Therefore, in this case, from De�nition 10, we
have that anti-self-dual remainder fW� can be con-
sidered as an equality measure. Moreover, in this
case, equality is measured from an absolute point
of view and remains invariant if the incomes of all
individuals are increased by the same amount.
Hence, we have that W� can be decomposed

as W (x) = cW� (x) +fW�(x) ; where cW� is a po-

sitional measure and fW� is an equality measure. It

4Aristondo et al. [1] do a similar exercise for three par-
ticular welfare functions.
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would be interesting to know something more about
both contributing factors.
First of all, we have to say that, if we consider

� = 1; the dual decomposition coincides with the
traditional one. It is straightforward to see thatcW1 (x) = � (x) and fW1(x) = E1(x) = �I1(x) = 0:
A similar result is obtained when � = 2: In this

case, we have thatW2 coincides with the Gini social
evaluation function. Aristondo et al. [1] prove that
for this function both the traditional decomposition
and that obtained by using the dual decomposition
coincide. That is cW2 (x) = � (x), and fW2(x) =
E2(x) = �I2(x): Moreover, in the limiting case,
when � !1; we have that

cW1(x) = lim
�!1

cW�(x) =
1

2
(x1 + xn) =

1

2

�
min
i
fxig+max

i
fxig

�
and

fW1(x) = lim
�!1

fW�(x) =
1

2
(x1 � xn) =

1

2

�
min
i
fxig �max

i
fxig

�
when the weights of the incomes tend to zero except
for the individuals at the extremes of the tails of the
distribution. Therefore, the measure only considers
transfers either from the richest individual, or to the
poorest one.
In the following we will show that the remainder

of any single-parameter Gini social evaluation func-
tion satis�es two principles related to a particular
perception of inequality sensitivity. From the de�ni-
tions of these principles, it holds that the remainder
is an equallyty measure with balanced sensitivity to
both tails.
Since the concern with inequality stems from the

injustice of extremely low incomes, it seems appro-
priate to choose social evaluation functions sensitive
to what happens to the poorest. However, the in-
tuitive appeal of the positional diminishing trans-
fer sensitivity principle can be questioned when we
consider only transfers between �rich�people. It is
easy to imagine people arguing that an equalizing
transfer between persons who are both �rich�(in an
absolute sense) can be more inequality reducing the
higher up it occurs in the distribution. Therefore
for transfers between �rich�people, it would seem
right to ask just the opposite of that required by the
positional diminishing transfer sensitivity principle.
Consequently, Puerta and Urrutia [16], consider-
ing two income classes, the �poor� and the �rich�
people, below and above the median, introduce a
new principle, the up-down positional transfer sen-
sitivity principle which depicts this idea. For this,
the population is split into two groups according to
the median. Whenever n is even, the population is
taken as

�
1; :::; n2

	
[
�
n
2 + 1; :::; n

	
and whenever n

is odd as
�
1; :::;

�
n
2

�	
[
��

n
2

�
+ 1; :::; n

	
, where

�
n
2

�

is the largest integer not greater than n
2 . For the

sake of simplicity, furthermore, we will use the for-
mer classi�cation, although the results also apply to
the latter one.

De�nition 12 A social evaluation function
W : Yn �! R (respectively and inequality
function I) satis�es the up-down positional
transfer sensitivity principle, if for any x 2Yn;
�; � > 0; and any pair of individuals i; j
such that i < j < n

2 + �; �Wi (�; �;x) �
�Wj (�; �;x), (�Ii (�; �;x) � �Ij (�; �;x)) and
�Wn�(i+�)+1 (�; �;x) � �Wn�(j+�)+1 (�; �;x) ;
(�In�(i+�)+1 (�; �;x) � �In�(j+�)+1 (�; �;x)):

The following result states a condition that guar-
antees this principle to be ful�lled by the remainder
of every member of the S-Gini family of social eval-
uation functions.

Proposition 10 For every single-parameter Gini
social evaluation function W� de�ned as in Eq.(2)
with � � 3, the anti-self-dual remainder of W�; fW�;
satis�es the up-down positional transfer sensitivity
principle.

The next proposition shows that the anti-self-
dual remainder of every single-parameter Gini so-
cial evaluation function with � � 3 veri�es a sec-
ond property related to the inequality sensitivity.
It states that two progressive transfers, one below
the median and another above it, have the same
equalizing e¤ect whenever the individuals involved
in both transfers are at the same positional distance
to the median position.

De�nition 13 A function f : Yn �! R satis�es
the symmetric positional transfer sensitivity prin-
ciple, if for any x 2Yn; �; � > 0; and any pair of
individuals i + � � n

2 and n � (i+ �) + 1 �
n
2 + 1;

�fi (�; �;x) = �fn�(i+�)+1 (�; �;x).

Notice that in this de�nition, all individuals in-
volved in the transfers are by pairs, at the same
positional distance to the median positions. That
is,
��i+ �� n

2

�� = ��(n� (i+ �) + 1)� �n2 + 1��� and��i� n
2

�� = ��(n� i+ 1)� �n2 + 1���.
Proposition 11 For every single-parameter Gini
social evaluation function W� de�ned as in Eq.(2)
with � � 3, the anti-self-dual remainder of W�; fW�;
satis�es the symmetric positional transfer sensitiv-
ity principle.

5. Conclusions

Every single parameter social evaluation function
can be decomposed into the mean income and an
absolute equality measure, by following the AKS
[2][13][17] approach. By following the dual decom-
position of an OWA operator in García-Lapresta
and Marques Pereira[8] and working in a di¤erent
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compact domain, we propose the dual decompo-
sition for every single parameter social evaluation
function, in order to obtain two contributing fac-
tors; the self-dual core, what we prove is a positional
measure, and the anti-self-dual remainder, what we
prove can be considered as an equality measure.
Whenever a single parameter social evaluation

function satis�es the k degree positional diminish-
ing transfer principle, the equality measure obtained
in the traditional decomposition by following the
AKS [2][13][17] approach satis�es the same princi-
ple. However, in this paper it is proved that the
equality measure obtained in the dual decomposi-
tion satis�es a principle with more balanced sensi-
tivity to both tails of the distribution, the k � 1
degree up-down positional transfer principle. More-
over, this equality measure satis�es another new
principle, the symmetric positional transfer sensi-
tivity principle.
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