
Fuzzy relational equations and the covering
problem

Qing-quan Xiong, Qian-yu Shu

College of Mathematics and Software Science, Sichuan Normal University,Chengdu, Sichuan 610066, P. R. China

Abstract

The work considers the problem of solving a system
of fuzzy relational equations with inf-implication
composition and introduces the concepts of a char-
acteristic matrix and attainable components. It is
first shown that solving the system is closely related
with the covering problem. Further, it is proved
that maximal solutions of the system correspond to
irredundant coverings of the characteristic matrix.
At last, the necessary and sufficient conditions that
the system has a unique(maximal) solution are
given.
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1. Introduction

Fuzzy relational equations play important roles in
many applications, such as intelligence technolo-
gy [7], compression/decompression of images and
videos [5,19,24] and fuzzy decision marking [19], etc.
The first paper of fuzzy relational equations was due
to Sanchez [25], where the max-min composition
was adopted. Recently, there have been many
research papers investigating the solvability of fuzzy
relational equations [2, 4, 7, 12, 15, 16, 19–22, 27–
29]. In fact, fuzzy relational equations can be
categorized based on many different compositions.
Some common compositions include max-min [4, 7,
12, 25], max-product [7, 23], max-Archimedean t-
norm [2, 4, 7, 11, 17, 19], inf-α [7, 15, 16] and inf-
αT [2, 7, 30] compositions. Wu [29] and Di Nola
et al. [6] found that in fuzzy relational calculus
and reasoning inf-α composition is better. In
particular, Di Nola et al. [7] obtained the smallest
solution of fuzzy relational equations with inf-α
composition and constructed all maximal solutions
on a linear lattice when the universe of discourse
is finite. Li and Wang [16] also discussed the
fuzzy relational equations with inf-α composition on
complete Brouwerian lattices, obtained a necessary
and sufficient condition that the solution set is
nonempty and described the solution set when the
right-hand side of fuzzy relational equations has an
irredundant finite meet-decomposition. After that,
in finite domains a necessary and sufficient solv-
ability condition was proposed for fuzzy relational
equations. Its maximal solutions and the whole
solution set were determined, in infinite domains

sufficient conditions for existence of a maximal
solution for one equation and a system of equations
were shown, respectively. Perfilieva [22] considered
the problem of solvability for a system of equations
with inf-→ composition on finite universes, where
equations were expressed using operations of a BL-
algebra. Xiong and Wang [30] dealt with the
problem of solving fuzzy relational equations with
inf-αT composition on complete Brouwerian lattices
under finite domains (resp. countably infinite
domains). When the right-hand sides of fuzzy re-
lational equations are meet-irreducible elements or
have irredundant finite meet-decompositions, some
necessary and sufficient conditions for attainable
solutions (resp. unattainable ones) are formulated
and some properties of attainable solutions (resp.
unattainable ones) are shown. Chen and Wang
[3] provided a proof by transforming polynomi-
ally the minimum covering problem, which is a
well known NP-hard problem, into the problem
of solving a system of sup-TM equations. In the
covering problem, the goal is to find all irredundant
coverings of a matrix. Markovskii [23] showed that
solving fuzzy relational equations with max-product
composition is closely related with the covering
problem, which belongs to the category of NP-hard
problems. Further, Markovskii proved that minimal
solutions of system of equations with max-product
composition correspond to irredundant coverings.
Lin [17] extended Markovskii’s work to fuzzy re-
lational equations with max-Archimedean-t-norm
composition. Further, Lin [18] investigated fuzzy
relational equations with u-norm and transformed
the problem of solving a system of fuzzy relational
equations into covering problem. In 2012, Shieh
[26] developed an efficient algorithm for finding
minimal coverings. In fact, Lin [17, 18] and Shieh
[26] discussed the relations between the minimal
solutions of the equations and the irredundant
coverings. However, fuzzy relational equations
with inf-implication composition have no minimal
solutions, there are maximal solutions of the e-
quations, in this paper, we discuss fuzzy relational
equations with inf-implication composition on [0,1].
In particular, the set of all maximal solutions, and
transform the problem of solving fuzzy relational
equations into a covering problem. Further, we
show that the relations between maximal solutions
of fuzzy relational equations with inf-implication
and the irredundant coverings of a binary matrix,
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the uniqueness of solution and the covering problem.
This paper is organized as follows. For the sake

of convenience, some notions and previous results
about the system of inf-implication equations are
summarized in Section 2. The concepts of char-
acteristic matrices and attainable components are
given and some properties about them are shown in
Section 3. The relation between maximal solutions
and irredundant coverings is described in Section
4. The necessary and sufficient conditions that
the system has a unique(maximal) solution are
presented and illustrated in Section 5.

2. Preliminary

In the following, unless otherwise stated, let L =
[0, 1], I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}
be two index sets. We are only interested in
fuzzy relational equations which have the system-
of-equation representation:

A ◦I X = B (1)

or
inf
j∈J
I(aij , xj) = bi for all i ∈ I, (2)

where A = (aij)I×J is a matrix with aij ∈ [0, 1],
B = (bi)i∈I is an n-dimensional column vector with
bi ∈ [0, 1] for all i ∈ I, j ∈ J and I denotes an
implication. The solution set is defined by X =
{X = (xj)j∈J : A ◦I X = B}. The system (2) is
solvable if and only if it has at least one solution.

Definition 2.1 [1, 27] (1) A binary operation T
on L is called a pseudo-t-norm if it satisfies the
following conditions:
(T1) T (1, a) = a and T (0, a) = 0 for all a ∈ L;
(T2) b 6 c⇒ T (a, b) 6 T (a, c) for all a, b, c ∈ L.
A pseudo-t-norm T on L is said to be infinitely
∨-distributive if it satisfies the following condition:
a, bj ∈ L (j ∈ Γ) ⇒ T (a,∨j∈Γbj) =∨j∈ΓT (a, bj).
A pseudo-t-norm T on L is said to be infinitely
∧-distributive if it satisfies the following condition:
a, bj ∈ L (j ∈ Γ)⇒ T (a,∧j∈Γbj) = ∧j∈ΓT (a, bj).
A pseudo-t-norm T on L is said to be infinitely

distributive if it is both infinitely ∨-distributive and
∧-distributive.
(2) A binary operation I on L is called to be an
implication if it satisfies the following conditions:
(I1) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0;
(I2) b 6 c ⇒ I(a, b) 6 I(a, c) and I(b, a) > I(c, a)
for all a, b, c ∈ L.
An implication I on L is said to satisfy the left

neutrality property if I(1, b) = b for every b ∈ [0, 1];
be infinitely ∨-distributive if it satisfies the following
condition:
a, bj ∈ L (j ∈ Γ)⇒ I(a,∨j∈Γbj) = ∨j∈ΓI(a, bj).
An implication I on L is said to be infinitely ∧-

distributive if it satisfies the following condition:
a, bj ∈ L (j ∈ Γ)⇒ I(a,∧j∈Γbj) = ∧j∈ΓI(a, bj).

An implication I on L is called infinitely dis-
tributive if it is both infinitely ∨-distributive and ∧-
distributive.

Remark 2.1 Note that for any implication I, it
holds that I(a, 1) = I(0, b) = 1 for every a, b ∈
[0, 1].

Definition 2.2 [27] Let ϕ be a mapping from L×L
into L. Define Iϕ, Lϕ as follows:

Iϕ(a, b) = sup{x ∈ L : ϕ(a, x) 6 b} for all a, b ∈ L,

Lϕ(a, b) = inf{x ∈ L : ϕ(a, x) > b} for all a, b ∈ L.

It is tacitly assumed that ∨∅ = 0 and ∧∅ = 1.

Remark 2.2 In Definition 2.2, when ϕ is a con-
junctor T or an implication I, we can obtain
operators IT or II . Further, IT is an implication.

Lemma 2.1 [10] If T is an infinitely ∨-
distributive conjunctor on L, then the following
conditions are equivalent:
(1) T (a, c) 6 b⇔ c 6 IT (a, b) for all a, b ∈ L.
(2) T (a, 0) = 0 for all a ∈ L.

Example 2.1 From five pseudo-t-norms in Table
1, we can obtain the following five implications (see
Table 2). In fact, TY (a, b) 6= TY (b, a) when a = 0.3,
b = 0.8, hence TY is not a t-norm. Further, these
implications satisfy the left neutrality property.

From now on, unless otherwise stated, we always
assume that T is an infinitely ∨-distributive pseudo-
t-norm and I is an infinitely ∧-distributive implica-
tion with T (a, 0) = T (0, a) = 0 and I(a, 1) = 1,
∀a ∈ L.

Lemma 2.2 [28] (1) If X1 , {x ∈ L : I(a, x) =
b} 6= ∅, then the equation I(a, x) = b has the
smallest solution ∧X1 and ∧X1 = T (a, b).
(2) If IT is ∨-distributive, i.e. I(x, x1 ∨ x2) =

I(x, x1)∨I(x, x2) for all x, x1, x2 ∈ L, then X1 is a
convex sublattice of L when X1 6= ∅. Moreover, if I
is an infinitely ∨-distributive implication and X1 6=
∅, then the equation I(a, x) = b has the greatest
solution ∨X1 and ∨X1 = IIT (a, b).

Denote

X∗ = (xj∗)j∈J ,

(
max
i∈I
T (aij , bi)

)
j∈J

. (3)

Lemma 2.3 [30] System (2) is solvable if and only
if X∗ is a solution of system (2), and X∗ is the
smallest solution of system (2).

3. Characteristic matrices of system (2) and
attainable components

In this section, we give the concepts of characteristic
matrices and attainable components. Further, some
properties are described.
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Name Year Formula
Minimum 1932 [1, 13] TM (a, b) = min(a, b)

Algebraic product 1969 [9, 13] TP (a, b) = ab
Łukasiewicz t-norm 1923 [1, 13] TL(a, b) = max{0, a+ b− 1}

Yager operation 1980 [31] TY (a, b) =
{
b

1
a , if a · b > 0,

0, if a · b = 0.

Fodor t-norm 1993 [8, 13] TF (a, b) =
{

0, if a+ b 6 1,
a ∧ b, otherwise.

Table 1: lists a few of common pseudo-t-norms.

Name Year Formula

Gödel 1932 [1] ITM
(a, b) =

{
1, if a 6 b,
b, otherwise.

Goguen 1969 [9] ITP
(a, b) =

{
1, if a 6 b,
b
a , otherwise.

Łukasiewicz 1923 [1] ITL
(a, b) = min{1, 1− a+ b}.

Yager 1980 [31] ITY
(a, b) =

{
ba, a > 0 or b > 0,
1, a = 0 and b = 0.

Fodor 1993 [8] ITF
(a, b) =

{
1, if a 6 b,
(1− a) ∨ b, otherwise.

Table 2: examples of implications corresponding to the Table 1.

The complete solution set X , when it is not
empty, can be well characterized and determined
by a unique smallest solution and a finite number
of maximal ones [30], i.e.

X = ∪X0∈X 0
[
X∗, X

0] , (4)

where X 0 denotes the set of all maximal solutions
of system (2).
Lemma 3.1 If bi = 1 for all i ∈ I, then X 0 is
{(1, 1, · · · , 1)′}.
In the following, we may assume that there exists

i0 ∈ I such that bi0 < 1.
Example 3.1 Consider the following fuzzy rela-
tional equations with inf-ITL

composition A ◦ITL

X = B, where

A =


0.5 0.7 0.2 0.3 0.7 0.8
0.9 0.4 0.6 0.5 0.4 0.7
0.4 0.6 0.3 0.3 0.1 0.8
0.1 0.8 0.4 0.1 1.0 0.2
0.6 0.2 0.3 0.2 0.4 0.5

,

B =
(

0.5 0.7 0.6 0.4 1
)′
. It can be verified

that the system is solvable and its solution is
X∗ = (0.6, 0.2, 0.3, 0.2, 0.4, 0.5)′.

Lemma 3.2 If X 6= ∅, then for each i ∈ I,
there exists at least one index ji ∈ J such that
I(aiji

, xji
) = bi for any X = (xj)j∈J ∈X .

Proof. It is trivial since J is a finite index set.

Definition 3.1 For the smallest solution X∗ =
(xj∗)j∈J , the characteristic matrix Q̃ = (q̃ij)m×n
of the system (2) is defined as

q̃ij =
{

[xj∗, II(aij , bi)] , if I(aij , xj∗) = bi,
∅, otherwise.

(5)

for all i ∈ I and j ∈ J .

By Lemma 2.2, each element q̃ij of the charac-
teristic matrix Q̃ indicates all the possible values
for the component xj to satisfy the i-th equation of
system (2). The system (2) is solvable if and only
if each row of Q̃ is a nonempty row, i.e. each row
contains at least one nonempty element.

Example 3.2 (Continue from Example 3.1) The
characteristic matrix Q̃ is

Q̃ =


∅ 0.2 ∅ ∅ ∅ ∅

0.6 ∅ 0.3 0.2 ∅ ∅
∅ 0.2 ∅ ∅ ∅ ∅
∅ 0.2 ∅ ∅ 0.4 ∅

[0.6,1] [0.2, 1] [0.3, 1] [0.2, 1] [0.4, 1] [0.5, 1]

 .

Lemma 3.3 Let X = (xj)j∈J ∈ X . If the
component xj satisfies I(akj , xj) = bk for some
k ∈ I, then the corresponding component xj∗ in
smallest solution also satisfies I(akj , xj∗) = bk.

Proof. By Definition 2.1, I(akj , xj∗) 6
I(akj , xj) = bk since X∗ 6 X. By
infj∈J I(aij , xj∗) = bi for all i ∈ I, we have
I(aij , xj∗) > bi for all i ∈ I. Therefore,
I(akj , xj∗) = bk.

Definition 3.2 Let X = (xj)j∈J ∈ Ln. The com-
ponent xj0 of X is called attainable if I(aij0 , xj0) =
bi holds for some i ∈ I; otherwise, xj0 is called
unattainable.

The equations of a system can be satisfied only by
attainable components. The presence of attainable
components is a necessary condition that the solu-
tion set is nonempty. If a system has no attainable
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components, then its solution set is empty. But if a
system has attainable component, then the solution
set is not sure. The values of all unattainable com-
ponents in all maximal solutions are obviously equal
to 1. However, some attainable components also
take only 1 in maximal solutions. The column of the
characteristic matrix corresponding to an attainable
component contains at leat one nonempty element.
For the smallest solution, the following result holds.

Lemma 3.4 If X 6= ∅, then every component of
the smallest solution is attainable.

Proof. It is straightforward from expression (3)
and Definition 3.2.

Theorem 3.5 Let X = (xj)j∈J ∈ Ln. Then X is
a solution of system (2) if and only if X > X∗ and
the induced binary matrix QX = (q′ij)m×n has no
zero rows, where

q′ij =
{

1, if xj ∈ q̃ij ,
0, otherwise.

Proof. If X is a solution of system (2), then X >
X∗ by Lemma 2.3. Further, there exists an index
ji ∈ J such that I(aiji

, xji
) = bi for each i ∈ I.

Therefore, xji
∈ q̃iji

. Thus q′iji
= 1 for each i ∈ I,

i.e. QX has no zero rows.
The converse implication, if X∗ 6 X and QX has

no zero rows, then

bi 6 I(aij , xj∗) 6 I(aij , xj) for all i ∈ I. (6)

Further, by the definition of QX , for every i ∈ I,
there exists an index ji ∈ J such that q′iji

= 1, that
is to say xji

6 II(aiji
, bi). Therefore, for every

i ∈ I, we have

inf
j∈J

I(aij , xj) =
[

inf
j∈J\{ji}

I(aij , xj)
]

∧ [I (aiji , II(aiji , bi))]

6 I (aiji , II(aiji , bi))
= I (aiji , sup{x ∈ L : I(aiji , x) 6 bi})
= sup {I(aiji , x) : I(aiji , x) 6 bi}
6 bi. (7)

Therefore, by formulas (6) and (7),
infj∈J I(aij , xj) = bi for all i ∈ I, i.e. X ∈ X
holds.

Definition 3.3 Let a, b, c ∈ L.
(i) The implication I is said to satisfy the right

cancelation law, if

I(a, b) = I(a, c) implies a = 0 or b = c. (8)

(ii) The implication I is said to satisfy the right
conditional cancelation law, if

I(a, b) = I(a, c) < 1 implies b = c. (9)

If an implication I satisfies the right cancelation
law, it obviously fulfills the right conditional can-
celation law, but the inverse is not true. In fact,

the right cancelation law and the right conditional
cancelation law of implications require that the
implication be strictly increasing in their second
arguments with proper domains. It is easy to
see that the first four implications in Example
2.1, i.e. the Gödel implication ITM

, the Goguen
implication ITP

, the Łukasiewicz implication ITL

and the Yager implication ITY
satisfy the right

conditional cancelation law. However, the Fodor
implication ITF

do not satisfy the right conditional
cancelation law since ITF

(0.6, 0.2) = ITF
(0.6, 0.3) =

0.4 but 0.2 6= 0.3. Next, we have the following
result.

Lemma 3.6 Let I satisfy the right conditional can-
celation law and its second partial mapping I(a, ·) be
infinitely distributive. Then the equation I(a, x) = b
with b ∈ [0, 1) has a unique solution II(a, b) and
II(a, b) 6= 1.

Lemma 3.7 Let I satisfy the right conditional
cancelation law, 0 6 bi < 1 for all i ∈ I and X =
(xj)j∈J ∈ X . If the component xj is attainable,
then xj = xj∗ < 1.

Proof. Since xj is attainable, therefore I(aij , xj) =
bi holds for some i ∈ I. By Lemma 3.3, we have
I(aij , xj) = I(aij , xj∗) = bi. Since bi < 1 for all i ∈
I and I satisfies the right conditional cancelation
law, therefore I(aij , xj) = bi has a unique solution
xj ∈ [0, 1) by Lemma 3.6. Thus xj = xj∗ < 1.

Lemma 3.8 Let X = (xj)j∈J ∈X 0. If xj < 1 for
some j ∈ J , then xj = xj∗.

Proof. If xj is attainable in the i-th equation with
bi < 1, then xj = xj∗ < 1 by Lemma 3.7. On the
other hand, if xj is only attainable in the equation
with bi = 1, then I(aij , xj) > bi for all bi < 1.
Hence, I(aij , 1) > I(aij , xj) > bi for all bi < 1.
Therefore, xj = 1 since X ∈X 0.

Lemma 3.9 Let 0 6 bi < 1 for all i ∈ I and X0 =
(x0
j )j∈J ∈X 0. Then x0

j′ is unattainable if and only
if x0

j′ = 1.

Proof. If x0
j′ = 1, then I(aij , 1) = 1 > bi for all

i ∈ I by Remark 2.1. Therefore, x0
j′ is unattainable.

Conversely, we assume that x0
j′ is unattainable

and x0
j′ < 1 for some j′ ∈ J . For each X0 =

(x0
j )j∈J ∈ X 0, we have infj∈J\{j′} I(aij , x0

j ) =
bi for all i ∈ I. Define X = (xj)j∈J with

xj =
{

1, if j = j′,
x0
j , otherwise.

Therefore, we have infj∈J I(aij , xj) =[
infj∈J\{j′} I(aij , x0

j )
]
∧ I(aij′ , 1) = bi for all

i ∈ I, i.e. X ∈ X . Further X > X0 and X 6= X0,
which contradicts with that X0 ∈X 0.
From Lemmas 3.7, 3.8 and 3.9, the following

result holds.

80



Theorem 3.10 Let I satisfy the right conditional
cancelation law and 0 6 bi < 1 for all i ∈ I. For
any X0 = (x0

j )j∈J ∈ X 0, if x0
j is attainable, then

x0
j = xj∗ < 1; otherwise, x0

j = 1.

Next, we consider the system (2) without the
restriction bi < 1 for all i ∈ I. Let I(xj) , {i ∈
I : I(aij , xj) = bi}.

Definition 3.4 Let X = (xj)j∈J ∈ X . An
attainable component xj is called 1-type if bi = 1
for each i ∈ I(xj); otherwise, xj is called 2-type.

Lemma 3.11 Let X = (xj)j∈J ∈X . If bk = 1 for
some k ∈ I, then I(akj , xj) = 1 holds for all j ∈ J .

Proof. Since bk = 1 for some k ∈ I, then

inf {I(ak1, x1), I(ak2, x2), · · · , I(akn, xn)} = 1.

Therefore, I(akj , xj) = 1 holds for all j ∈ J .

Lemma 3.12 Let I satisfy the right conditional
cancelation law. For any X = (xj)j∈J ∈ X , if
a component xj is a 2-type attainable, then xj =
xj∗ < 1.

Proof. The proof is similar to that of Lemma 3.7.

Lemma 3.13 For each X0 = (x0
j )j∈J ∈ X 0, a

component x0
j = 1 if and only if x0

j is either 1-type
attainable or an unattainable.

Proof. If x0
j = 1, then I(aij , x0

j ) = I(aij , 1) = 1
for all i ∈ I by Remark 2.1. Therefore, if bi = 1 for
some i ∈ I, then x0

j is 1-type attainable; if bi < 1
for all i ∈ I, then x0

j is unattainable.
Conversely, if x0

j is 1-type attainable, then
I(aij , x0

j ) = 1. Therefore, x0
j = 1 since I(aij , 1) = 1

and X0 = (x0
j )j∈J ∈ X 0. On the other hand, if x0

j

is unattainable, we assume that x0
j < 1, then the

rest of the proof is similar to that of Lemma 3.9.
From Lemmas 3.12 and 3.13, the following theo-

rem is true.

Theorem 3.14 Let I satisfy the right conditional
cancelation law. For any X0 = (x0

j )j∈J ∈ X 0, if a
component x0

j is 2-type attainable, then x0
j = xj∗ <

1; otherwise, x0
j = 1.

4. Relation between maximal solutions and
irredundant coverings

In this section, we discuss the problem of finding all
maximal solutions of system (2). Since system (2)
has at most one smallest solution, by Theorem 3.14,
fuzzy relational equations with the right conditional
cancelation law implication have a finite number
of maximal solutions. To describe the set of all
solutions, we have to describe the set of all maximal
solutions. Next, we transform the problem of
finding all maximal solutions of system (2) into
that of finding all irredundant coverings of the
characteristic matrix of system (2).

Definition 4.1 [14] Let Q̃ be a characteristic
matrix of system (2).
i) A column j is said to cover a row i if q̃ij 6= ∅.

A set of nonempty columns C forms a covering of
Q̃ if each row of Q̃ is covered by some column in C.
ii) A column j in a covering C is called redundant

if the set of columns C\{j} remains to be a covering
of Q̃. A covering C is irredundant if it has no
redundant columns.

The set of all irredundant coverings of a charac-
teristic matrix Q̃ is denoted by Φ(Q̃). Therefore, in
Example 3.2 (ii) the set of all irredundant coverings
of Q̃ is Φ(Q̃) = {{1, 2}, {1, 3}}. By Theorem 3.5,
we have

Theorem 4.1 System (2) is solvable if and only if
there exists a covering C of the characteristic matrix
Q̃.

Definition 4.2 Let C ∈ Φ(Q̃). The mapping
vector of C is denoted by XC = (xcj)j∈J with

xcj =
{

1, if j 6∈ C,
xj∗, otherwise. (10)

Definition 4.3 Let X = (xj)j∈J ∈ X . The
attainable index set of X is denoted by ΓX , {j ∈
J : xj = xj∗ < 1}.

Example 4.1 (Continue from Examples 3.1 and
3.2 (i)) For the covering C = {1, 2}, the mapping
vector of C is XC = (0.6, 0.2, 1, 1, 1, 1)′. Let X =
(1, 0.2, 0.8, 1, 0.6, 0.8)′ ∈X , the attainable index set
is ΓX = {1, 4}.

Denote Ij(Q̃) = {i ∈ I : q̃ij 6= ∅} for all j ∈ J and
Ji(Q̃) = {j ∈ J : q̃ij 6= ∅} for all i ∈ I.

Lemma 4.2 Let X 6= ∅ and C ∈ Φ(Q̃). Then
xj∗ 6= 1 holds for all j ∈ C, where X∗ = (xj∗)j∈J is
the smallest solution of systems (2).

Proof. Assume that there exists j0 ∈ C such that
xj0∗ = 1, then by Lemma 3.3 for each i ∈ Ij0(Q̃), we
have q̃ij0 6= ∅ since X 6= ∅. Further, I(aij0 , xj0∗) =
I(aij0 , 1) = 1. Therefore, bi = 1 for all i ∈ Ij0(Q̃).
Since X 6= ∅, we have q̃ij 6= ∅ for all i ∈ Ij0(Q̃) and
j ∈ J . Hence Ij0(Q̃) ⊆ Ij(Q̃) for all j ∈ J . Since C
is an irredundant covering of Q̃, therefore we must
have q̃i0ji0

6= ∅ for some ji0 when bi0 < 1 for some
i0 ∈ I. Note that I(ai0j0 , xj0∗) = I(ai0j0 , 1) =
1 > bi0 , then q̃i0j0 = ∅. Further, ji0 6= j0. Thus
C\{j0} 6= ∅. Therefore, ∪j∈C\{j0}Ij(Q̃) = I since
C\{j0} 6= ∅ and Ij0(Q̃) ⊆ Ij(Q̃), which contradicts
C ∈ Φ(Q̃).

Lemma 4.3 Let I satisfy the right conditional
cancelation law and X = (xj)j∈J ∈ X . Then ΓX

is a covering of Q̃.
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Proof. Let I ′ = {i ∈ I : bi 6= 1}. It is obvious
that I ′ 6= ∅. By Lemma 3.12, then ΓX 6= ∅. Since
X = (xj)j∈J ∈ X , there exists an index j ∈ J
such that I(aij , xj) = bi for each i ∈ I ′. For any
j ∈ ΓX , we have I(aij , xj) = I(aij , xj∗) = bi < 1
by Lemma 3.12. Thus q̃ij 6= ∅ by Definition 3.1.
Consequently, i ∈ Ij(Q̃). Note that, bi0 = 1 for all
i0 ∈ I\I ′ 6= ∅ and X = (xj)j∈J ∈ X , then q̃i0j 6= ∅
for all j ∈ J . Further, q̃i0j 6= ∅ for all j ∈ ΓX ⊆ J .
Thus, ∪j∈ΓX Ij(Q̃) = I ′∪ (I\I ′) = I. That is to say,
ΓX is a covering of Q̃.

Theorem 4.4 If X 6= ∅ and bi < 1 for all i ∈
I, then there exists a one-to-one mapping between
maximal solutions of system (2) and irredundant
coverings.

Proof. We prove it from the following three
procedures.
First, we prove that if C is an irredundant

covering, then XC ∈X 0. Let C be an irredundant
covering. Then ∪j∈CI(xj∗) = I. Further, there
exists j ∈ J such that I(aij , xj∗) = bi for each
i ∈ I. By formula (10), we have that I(aij , xcj) = bi
for each i ∈ I. That is to say XC ∈ X . Next,
we show that XC is a maximal solution of system
(2). Assume to the contrary that XC 6∈X 0. There
exists k ∈ J such that I(aiki

, xki
) > bi for every

i ∈ I. By Lemma 3.8, we can define X(k) = (xj)j∈J
with

xj =
{

1, if j = k,
xcj , otherwise.

Therefore, we have C\{k} is a covering, which
contradicts with that C is an irredundant covering.
Hence XC ∈X 0.
Second, we prove that ifX = (xj)j∈J ∈X 0, then

Jc , {j ∈ J : xj < 1} is an irredundant covering.
By X = (xj)j∈J ∈ X 0, then infj∈J I(aij , xj) = bi
for all i ∈ I. Hence, for each i ∈ I, there exists
j ∈ Jc such that I(aij , xj) = bi. By Lemma 3.8,
we have I(aij , xj∗) = bi. Therefore, ∪j∈JcI(xj∗) =
I. By Definition 4.1, we have Jc is a covering. If
∪j∈Jc\{j0}I(xj∗) = I for some j0 ∈ J , then for each
i ∈ I, there exists j ∈ Jc\{j0} such that I(aij , xj) =
I(aij , xj∗) = bi. Define X ′(j0) = (x′j)j∈J with

x′j =
{

1, if j = j0,
xj , otherwise.

Obviously, X ′(j0) ∈ X and X ′(j0) > X and
X ′(j0) 6= X, which contradicts with that X ∈ X 0.
Therefore, Jc is an irredundant covering.
At last, we can construct a one-to-one mapping

f : C → XC with xcj = xj∗ for j ∈ C and
xj∗ = 1 for j 6∈ C. Hence, there is a one-to-one
mapping between maximal solutions of system (2)
and irredundant coverings.
From Theorem 4.4, we have the following corol-

laries.

Corollary 4.5 For any C1, C2 ∈ Φ(Q̃), if C1 6=
C2, then XC1 6= XC2 .

Corollary 4.6 For any X1, X2 ∈ X 0, if X1 6=
X2, then ΓX1 6= ΓX2 .

Corollary 4.7 All maximal solutions of system (2)
have the following form X0 = (x0

j )j∈J with

x0
j =

{
xj∗, if j ∈ C,
1, otherwise,

where C ∈ Φ(Q̃).

Thus by Lemma 2.3, Theorem 4.4 and Corollaries
4.5, 4.6 and 4.7, we can obtain the solution set of
system (2). In fact, maximal solutions of system (2)
are completely determined by irredundant coverings
of the characteristic matrix. Shieh [26] proposed
an algorithm for finding irredundant covering of
a matrix. Base the algorithm, next we give an
example for finding all maximal solutions. The
specific algorithm may see [26].

Example 4.2 (Continue from Example
3.2) By the algorithm in [26], we have
Φ(Q̃) = {{2, 1}, {2, 3}, {2, 4}}. Consequently,
all maximal solutions are X ∗ =
{(0.6, 0.2, 1, 1, 1, 1)′, (1, 0.2, 0.3, 1, 1, 1)′, (1, 0.2, 1, 0.2, 1, 1)′}.

5. The uniqueness of solution of system (2)

In this section, we give two necessary and suf-
ficient conditions that the system (2) has a u-
nique(maximal) solution.

Definition 5.1 Let Q̃ be a characteristic matrix of
system (2). A column j of Q̃ is said to be in the
kernel Ker(Q̃) if there exists a row i such that q̃ij is
the unique nonempty element in the i-th row. The
component xj for all j ∈ Ker(Q̃) is called super-
attainable.

Remark 5.1 It is easy to see that a column j0 ∈
Ker(Q̃) if and only if there exists a row which is
covered only by the column j0, i.e. the column
j0 belongs to each covering of Q̃. Consequently,
Ker(Q̃) and the row s covered by Ker(Q̃) can be
removed to reduced the sized of Q̃.

Let Ij = {i ∈ I : q̃ij is the unique nonempty element
in row i of Q̃ } for all j ∈ J . It is obvious that Ij 6= ∅
if and only if j ∈ Ker(Q̃). For the i-th equation(
i ∈ Ij , j ∈ Ker(Q̃)

)
, we have I(aij , xj) = bi since

q̃ij is a unique nonempty element in row i for each
i ∈ Ij . Now define X[ = (x[j)j∈J with

x[j =
{
∧i∈Ij

II(aij , bi), if j ∈ J and Ij 6= ∅,
1, otherwise.
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Remark 5.2 It is straightforward that X∗ 6 X 6
X[ for any X ∈ X since X[ contains the upper
bound to meet all equations corresponding to the
elements of ∪j∈JIj.

Theorem 5.1 Let system (2) be solvable. Then

1. System (2) has a unique maximal solution if
and only if X[ ∈X .

2. System (2) has a unique solution if and only if
X[ = X∗.

Proof. (i) Assume that X[ ∈ X , then X[ is the
unique maximal solution since X∗ 6 X 6 X[ by
Remark 5.2.
Conversely, if system (2) has a unique maximal

solution X0 = (x0
j )j∈J but X[ 6∈ X , there must

exists a row i0 of Q̃ such that it contains more than
one nonempty elements and any covering of the row
i0 can not cover any other rows. Denote Ji0 = {j ∈
J : q̃i0j 6= ∅}. Define X(j) = (xjk)k∈J for each
j ∈ Ji0 with

xjk =
{
x[k, if k = j,
x0
k, otherwise.

Obviously, X(j) ∈ X . Since X0 is the unique
maximal solution, therefore, x0

j = x[j for all j ∈ Ji0 .
However, we have that the elements of row i0 in
the binary matrix induced by X0 are all zeros. By
Theorem 3.5, we have X0 6∈X , a contradiction.
(ii) It is straightforward from (i).
From Theorem 5.1, Definitions 4.1 and 5.1, the

following result holds.

Theorem 5.2 Let I satisfy the right conditional
cancelation law and Q̃ be the characteristic matrix
of system (2). Then
(i) System (2) has a unique solution if and only

if all components are supper-attainable.
(ii) System (2) has a unique maximal solution if

and only if Ker(Q̃) is a unique irredundant covering
of Q̃.

Remark 5.3 1. If all the nonempty elements of
Q̃ happen to be singletons, the construction of
X[ can be simplified by X[ = (x[j)j∈J with

x[j =
{
xj∗, if j ∈ Ker(Q̃),
1, otherwise.

2. If system (2) has a unique solution, then the
number of unknowns is no more than the num-
ber of equations in system (2), i.e. n 6 m.

3. System (2) has a unique solution if and only if
Ker(Q̃) is a unique covering of Q̃.

Example 5.1 Consider the system A ◦ITP
X = B

with

A =


0.3 0.8 0.1 0.2
0.9 0.3 0.4 0.5
0.8 0.5 0.6 0.9
0.6 0.3 0.8 0.2

 and B =


0.6
0.7
0.4
0.5

 .

The system is solvable since X∗ =
(0.63, 0.48, 0.40, 0.36)′ is its smallest
solution. The characteristic matrix is

Q̃ =


∅ 0.48 ∅ ∅

0.63 ∅ ∅ ∅
∅ ∅ ∅ 0.36
∅ ∅ 0.40 ∅

. Note that

all the nonempty elements of Q̃ are singletons.
Therefore, Ker(Q̃) = {1, 2, 3, 4}. Furthermore,
x1, x2, x3, x4 are all supper-attainable and
X = (0.63, 0.48, 0.40, 0.36)′ is the unique solution
of the system.

Example 5.2 Consider the system A ◦ITL
X = B

with

A =


0.5 0.2 0.3 0.5
0.6 0.5 0.2 0.9
0.9 0.6 0.9 0.1
0.4 0.7 0.7 0.3

 and B =


1

0.7
0.5
0.6

 .

The system is solvable since X∗ = (0.5, 0.3, 0.4, 0.6)′
is its smallest solution. The characteristic matrix

is Q̃ =


[0.5, 1] ∅ ∅ ∅
∅ ∅ ∅ 0.6
∅ ∅ 0.4 ∅
∅ 0.3 ∅ ∅

. Obviously,

Ker(Q̃) = {1, 2, 3, 4} and X[ = (1, 0.3, 0.4, 0.6)′
is the unique maximal solution of the system. Al-
though all the columns of Q̃ are in Ker(Q̃), the
solutions of the system are not unique in view of
the first column of Q̃ is non-singleton.
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