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Abstract

The paper gives the systematic characterization of
eigenspace in max-T algebra where T is equal to
Łukasiewicz t-norm. Max-Łukasiewicz fuzzy alge-
bra can be used for the description of the states
of Discrete-event systems. The states can repre-
sent a balance of the resource unit expended dur-
ing the evolution of the system (for example fuel or
money). In the contribution, the classification of
max-Łukasiewicz eigenspaces is described and ex-
plained by the two-dimensional examples - in this
case it is possible to accompany the example with
illustrative graphs. However the description of the
eigenspace for the higher dimensions is also out-
lined.
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1. Introduction

Extremal algebras are used mainly for describing
and studying systems working in discrete time.
During the operation of such systems the steady
state can arise. The system is described by tran-
sition matrix and the eigenvector(s) of such matrix
represents the steady states of the system.
Max-T fuzzy algebra is defined over the interval

[0, 1] and uses instead of conventional operations of
addition and multiplication the operations of maxi-
mum and one of the triangular norms, the so-called
t-norms. These operations are extended in a natural
way to cartesian products of vectors and matrices.
T -norms were introduced by Schweizer and Sklar in
[8] in the context of probabilistic metric spaces. T -
norms are used to interpret the conjunction in the
fuzzy logics and intersection of fuzzy sets. These
functions have applications in many areas such as
decision making processes, statistics and game the-
ory, information and data fusion, probability theory
and risk management. The t-norms together with
t-conorms play the key role in fuzzy set theory.
The fuzzy extension of description logics, the for-

malism for the representation of structured knowl-
edge used frequently in the design of ontologies, is
described in [1]. The meaning of ontologies has in-
creased in the last decades. Ontologies have been
successfully used as part of expert and multiagent
systems, as a knowledge base in robotics as well
as the core element in the Semantic Web (aims at
converting the current web into a "web of data" by
defining the meaning of information).

Although there exist many T -norm families
(for example, the Aczel-Alsina, the Jane Doe1,
Hamacher, Einstein product - for the overview see
[2]), let us mention four main t-norms - Łukasiewicz,
Gödel, Product and Drastic.

The Łukasiewicz norm might be considered as
a logic of absolute or metric comparison. The
Łukasiewicz conjunction is computed as

x⊗L y = max{x+ y − 1, 0}. (1)

Gödel norm is the simplest norm; the conjunction
is defined as a minimum of the entries - of the truth
degrees of the constituents. Gödel logic is logic with
a relative comparison.

x⊗G y = min(x, y) (2)

The definition of the product norm follows:

x⊗p y = x · y. (3)

The drastic triangular norm (in literature, there
can be also found the term “weakest norm”) is basic
example of a non-divisible t-norm on any partially
ordered set. The drastic triangular norm is defined
as follows:

x⊗d y =
{

min(x, y) if max(x, y) = 1
0 if max(x, y) < 1 (4)

The eigenvalues and eigenvectors belong to im-
portant characteristics of the system described by
these fuzzy algebras. For the case of drastic and
product t-norm, the eigenspace structure have been
already studied. The paper [4] published in the
journal Fuzzy Sets and Systems deals with max-
drast algebra. The investigation of the eigenspace
in max-prod algebra [7] is in preparation. Finally,
papers [6, 3] deals with Łukasiewicz fuzzy algebra.

The state of the system in time t can be described
by the state vector, say x(t). The transition matrix,
denoted by A, describes the transitions of the sys-
tem from one state to another. By the multiplica-
tion of transition matrix and the state vector, the
next state of the system, x(t + 1), is obtained; it
can be written A ⊗ x(t) = x(t + 1). During the
operation of the system, after some time, it can
happen that the system reaches a steady state. In
max-Łukasiewicz fuzzy algebra the state vectors of
steady states correspond to the eigenvectors of the
transition matrix A.

Łukasiewicz arithmetical conjunction can be used
in many types of situations. The fact that the num-
ber 1 is subtracted from the sum of the components
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and the maximum with zero is taken, leads to the
observation that the count of the operation is the re-
mainder, some part that is over the unit. Following
this idea, the conjunction can be used to compute,
for example, the amount of money that should be
paid off for the phone bill where x can be the price
for the SMS in total and y can represent the price
for the calls in total. Number 1 here is substituted
with the amount of lump sum. There are other sim-
ilar situations, for example, the data backup on the
server, maximal capacity of the pond, overdraft of
the project funds, or savings of the partners with a
common bill.

2. Eigenproblem in Max-Łukasiewicz fuzzy
algebra

Max-Łukasiewicz algebra uses, as was written
above, two binary operations - the operation of ad-
dition x⊕y = max(x, y) and the operation of multi-
plication x⊗L y = max{x+y−1, 0}. The operation
⊗L has, as in conventional algebra, the priority over
the operation ⊕. These operations are formally ex-
tended to matrices and vectors, again, similarly as
in linear algebra. That is if matrices A = (aij) and
B = (bij) are of compatible sizes then it can be
written A ⊕ B = aij ⊕ bij = max(aij , bij); A ⊗L
B =

⊕
k aik ⊗L bkj = maxk(max(aij + bij − 1, 0));

α⊗L A = A⊗L α = α⊗L aij for α ∈ R.
To solve the eigenproblem in max-Łukasiewicz al-

gebra means to find such nontrivial vector x (called
the eigenvector) for some λ (called the eigenvalue)
such that it holds

A⊗L x = λ⊗L x. (5)

This equation can be converted into the language of
the so-called tropical linear algebra, i.e. max-plus
algebra, because, as we will see, these two structures
are closely related. The max-plus algebra is denoted
by Rmax = (R,⊕,⊗, ε, e), where R is the set of real
numbers extended by the infinite value ε = −∞ and
zero element e = 0. Binary operations ⊕, ⊗ are
defined on R as a⊕ b = max(a, b) and a⊗ b = a+ b.
The developed theory of well known max-plus al-

gebra can be applied in a following way - let’s have
a closer look at the Łukasiewicz conjunction and
rewrite the equation using max-plus operators:

x⊗L y = (x− 1)⊗ y ⊕ 0 (6)

Then the equation (5) of the eigenproblem in max-
Łukasiewicz algebra can be converted into the max-
plus one in the following way:

A(1) ⊗ x⊕ 0 = (λ− 1)⊗ x⊕ 0, (7)

where A(1) is the matrix with all entries equal to
(aij − 1) and 0 is a vector with zero entries.
Some examples with illustrative graphs and pic-

tures are given for two- and three-dimensional ma-
trix. For two dimensions the eigenspaces can be

clearly depicted without the need to have an inter-
active environment as it would be in case of four+
dimensions. To generate some graphical represen-
tation for higher dimensions is unfortunately not
clearly arranged, however the computation of the
characteristics is more complex, but analogical, and
will be also shown in further text.

3. Characterization of the eigenspace for
two-dimensional matrix

Let us consider the two-dimensional matrix A, vec-
tor x and the eigenvalue λ. The eigenproblem can
be written as:(

a11 a12
a21 a22

)
⊗L

(
x1
x2

)
= λ⊗L

(
x1
x2

)
, (8)

and converted to tropical algebra(
a11 − 1 a12 − 1
a21 − 1 a22 − 1

)
⊗
(
x1
x2

)
⊕
(

0
0

)
=

(λ− 1)⊗
(
x1
x2

)
⊕
(

0
0

)
. (9)

To solve the eigenproblem, two equations can be
identified and solved. The first equation is of form:

(a11+x1−1) ∨ 0 ∨ (a12+x2−1) ∨ 0 = (λ+x1−1) ∨ 0
(10)

For simplification of the equation and preparation
for further use, the element (1 − λ) can be added
to both sides of the equation (with an effect of the
variables separation on the right side of the equa-
tion):

(a11 + x1 − λ) ∨ (1− λ) ∨ (a12 + x2 − λ) ∨
(1− λ) = x1 ∨ (1− λ)

(11)

Proposition 3.1 For x1 ∈ (1− λ, 1〉, the equation
(11) holds if and only if either

a11 = λ ∧ a12 − λ+ x2 ≤ x1 (12)
or

a11 ≤ λ ∧ a12 − λ+ x2 = x1 (13)

Proof: It is easily seen that for the case (1− λ) <
x1 ≤ 1 it holds (a11 +x1−λ) ∨ (1−λ) ∨ (a12 +x2−
λ) ∨ (1− λ) = x1. The equation is satisfied if and
only if (a11 + x1 − λ) = x1 and other terms of the
equation are less or equal x1, or (a12 +x2−λ) = x1
and other terms are less or equal x1. �

Proposition 3.2 For x1 ∈ 〈0, 1− λ〉, the equation
(11) holds if and only if the condition

x1 ≤ 1− a11 ∧ x2 ≤ 1− a12 (14)

is satisfied.
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Proof: In the case 0 < x1 ≤ (1 − λ) it holds
(a11 +x1−λ) ∨ (1−λ) ∨ (a12 +x2−λ) ∨ (1−λ) =
(1 − λ) and this is true if and only if both terms
(a11 + x1 − λ) and (a12 + x2 − λ) are less or equal
(1− λ). �

Similarly for the second equation it holds

(a21 + x1 − λ) ∨ (1− λ) ∨ (a22 + x2 − λ) ∨
(1− λ) = x2 ∨ (1− λ).

(15)

Proposition 3.3 For x2 ∈ (1− λ, 1〉, the equation
(15) holds if and only if either

a22 = λ ∧ a21 − λ+ x1 ≤ x2 (16)
or

a22 ≤ λ ∧ a21 − λ+ x1 = x2. (17)

Proof: Again, for the case (1 − λ) < x2 ≤ 1 the
equation (15) is true if and only if (a21+x1−λ) = x2
and other terms of the equation are less or equal x2,
or (a22 + x2 − λ) = x2 and other terms are less or
equal x2. �

Proposition 3.4 For x2 ∈ 〈0, 1− λ〉, the equation
(11) holds if and only if the condition

x2 ≤ 1− a22 ∧ x1 ≤ 1− a21. (18)

is satisfied.

Proof: For the case 0 < x2 ≤ (1− λ) it holds that
both terms, (a21 + x1 − λ) and (a22 + x2 − λ) have
to be less or equal (1− λ). �

The solution set of (8) is tropically convex. We
can say that it is the tropical convex hull defined by
the finite number of points. That is, if the set con-
tains points x, y then the tropical segment joining x
and y also belongs to the set. Examples of tropical
segments between three points are shown in the left
part of Figure 1, tropical segment is a combination
of the vertical, horizontal and diagonal segments,
for details see [5]. The right part of figure depicts
the tropical convex hull defined by three points.

Figure 1: Tropical segments and tropical convex
hull for the case of three points x, y, z.

Now we can picture the solution set for the first
equation (11) using some of the above written con-
ditions. Let’s say for the entries a11 < a12 < λ we

have to consider the conditions (13) and (14). Fig-
ure 2 shows the solution set. For the cases where
x1 > (1−λ) it holds that a12−λ+x2 = x1. Because
in this case a12 − λ < 0, the solution of the equa-
tion is the straight segment above the diagonal. For
the cases where x1 ≤ (1 − λ) the condition (14) is
considered. The solution set of the first equation is
then the union of solutions of two above mentioned
domains.

Figure 2: The solution set of the first equation in
case a11 < a12 < λ

Along the same lines it is possible to construct
the solution set for other possible positions of the
parameter λ and the variables from the equation.
Although there are six possibilities to place λ, three
special types of shapes of solution sets for each of
equations can be observed. These types depend on
the relative positions of λ and the diagonal entries
of the matrix. For the two-diagonal example, we
can also say that the entries of the first column of
A have an influence on the height of the solution set,
whereas the entries of the second column influence
the width of the solution set of particular equation.

Figure 3 shows all three types of solution sets for
each equation. The numbers in the notation stand
for the particular equation (whether it is the solu-
tion set for the first or the second equation) and the
Greek letter means the type. The types are gener-
ally influenced by the position of λ and the diagonal
entry of the matrix. For the ith equation it holds
that the solution set is of type

• α if and only if aii < λ
• β if and only if aii = λ
• γ if and only if aii > λ

Note that the values of particular entries are de-
noted in the picture by a complement to number
one, for example, λ = 1 − λ. The possible changes
in the shape in dependence on the size of aij are
also outlined.

The solution sets denoted as 1α and 2α are sim-
ilar each other by the shape of the solution set - a
rectangle connected with a segment of solutions in
the upper right corner. In case of the type 1α the
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parameter 1− a12 influences the height of the rect-
angle and the value 1−λ influences the width. The
limits for the case 2α are symmetric - the parameter
1 − a21 influences the width and 1 − λ has impact
on the height of the solution set.
In case of type β the width of solution set 1β in

the picture (height for 2β) is maximal possible and
the height is influenced by the value 1− a12 (1-a21
for 2β) and the point of intersection with λ.
It can be seen from the picture that the third

type, γ, is the simplest one. The value 1 − a12 in-
fluences the height and the value 1− a11 influences
the width of the solution set 1γ. Similarly for the
type 2γ, the value 1− a22 influences the height and
the value 1 − a21 influences the width of depicted
solution set.

Figure 3: Types of solution sets for particular equa-
tions

The solution set of the eigenproblem is then an
intersection of the solution sets of particular equa-
tions. Two numerical examples with graphical rep-
resentation of the solution sets follow.

Example 3.1 Let us consider two matrices A and
B and for both consider the same λ = 0.4.

A =
(

0.3 0.8
0.2 0.4

)
;B =

(
0.4 0.5
0.2 0.4

)
To find the eigenspace associated with given lambda
we will first determine the position of λ and the

diagonal entries of the matrices. For A it holds that
a11 < λ = a22. This means that the eigenspace
is an intersection of the sets 1α and 2β. The fact
that a12 − λ > λ − a21 causes that the segment of
solutions is shortened (left part of Figure 4).

Diagonal entries of B are a11 = a22 = λ and
this leads to conclusion that the eigenspace of B is
an intersection of the sets 1β and 2β. Note that
the presence of the stripe of solutions (right part of
Figure 4) is caused by the distances of the elements
a12 and a21 from λ, specifically by inequality a12 −
λ < λ− a21.

Figure 4: Solution sets for examples A (on the left)
and B (on the right)

It can be seen from previous figures that the
value 1− λ divides the coordinate system into four
parts. The eigenvectors can be described by way
of the partition of indices of the vector components
(introduced in [3]) according to their value. For
xi ≤ 1 − λ the index i ∈ L and for xi ≥ 1 − λ
include the index i ∈ K. Such partition is called
(K,L) partition. It is a partition of {1, . . . , n},
that is, the subsets K,L ⊆ {1, . . . , n} such that
K ∪ L = {1, . . . , n} and K ∩ L = ∅, see Figure
5. The letters in the circle indicate the member-
ship of i to the set according to the above written
conditions, each of four parts of the whole set is
then described by certain combination of subsets
K and L. The Łukasiewicz eigenvectors satisfy-
ing these conditions are called (K,L)-Łukasiewicz
eigenvectors. On the other hand, if for some parti-
tion the (K,L)-Łukasiewicz eigenvectors exist, then
we call such partition a “secure partition”. For the
given eigenspace in Figure 5 it holds that parti-
tions L = {1, 2},K = ∅; L = {2},K = {1} and
L = ∅,K = {1, 2} are secure.

4. The eigenspace for matrices of higher
dimensions

The complex algorithm for computation of the
eigenspace using the (K,L) partition is given in [3],
see Algorithm 3.1. With the knowledge, which of
the partitions are secure, we can compute the gen-
erators of the tropical convex hull for every secure
partition. The solution of the eigenproblem is then
an union of constituent solutions.
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Figure 5: (K, L) partition for two dimensions

To show the example for higher dimensions it is
needful to define the “security”.

We can distinguish three types of “security” [3]:

• for λ > 0, a weighted digraph is called λ-secure
if for each node of the graph and each walk P
issuing from that node holds −λ+ w(P ) ≤ 0.
• the partition is called secure, if every walk
in the weighted digraph of matrix A(λ), that
starts in a node that belongs to L and has all
other nodes in K, has non-positive weight. We
say that the partition ([n], ∅) is secure if cor-
responding directed graph of A(λ) is λ-secure,
and that the partition (∅, [n]) is secure. The no-
tation A(λ) stands for the matrix with entries
equal to aij − λ.
• node i of a weighted digraph is called secure if
the weight of every walk starting in i is non-
positive.

The computation of the eigenspace for matrices
of higher dimensions is shown on following three-
dimensional example.

Example 4.1 Consider the max-Łukasiewicz
eigenproblem for λ = 0, 7 and

A =

 0.6 0.8 0.4
0.1 0.5 0.4
0.9 0.6 0.5

 .

Then we can write:

A(λ) =

 −0.1 0.1 −0.3
−0.6 −0.2 −0.3

0.2 −0.1 −0.2

 ,

It is easily seen that there are two positive paths
in the directed graph of A(λ), see Figure 6. For this
simple three-dimensional example, according to def-
inition of the security we are able to deduce, which
of the partitions are secure. Let’s start with the
partition L = {2},K = {1, 3}. This partition is
secure, because we can verify that every walk that
starts in the node 2 and has all other nodes in K,
that is, the walk can continue only between nodes
1 and 3, has nonpositive weight.

To get further secure partition, we have to find
such node in K that is secure in K. This node, say

Figure 6: Weighted directed graph of A(λ)

k, can be then shifted and the partition (K−k, L+
k) is also a secure partition.

The node 3 is not secure inK, because of the walk
p = (3, 1) with positive weight w = 0.2. The node 1
is secure inK, because every walk realized from that
node (that has all other nodes inK) has nonpositive
weight. This node can be added to L and we obtain
next secure partition: L = {1, 2},K = {3}. Accord-
ing to definition, the partitions L = {1, 2, 3},K = ∅
and L = ∅,K = {1, 2, 3} are also secure.
To picture the (K,L) partitions let’s look at Fig-

ure 7. The graphical representation is 3D-cube di-
vided (similarly as in two-dimensional example) by
the value λ = 1− λ on eight blocks.
The solution set of the eigenproblem is a union of

tropical convex hulls for each of secure partitions,
in this example, the union of solution sets of four
blocks in the cube. We will focus on one of them,
that one with the least L, the partition L = ∅,K =
{1, 2, 3}. It is the highlighted cube at the upper
right corner in Figure 7.

Figure 7: (K, L) partition for three dimensions

Using Theorem 3.2. and Corollary 3.4. in [3],
we compute the generators of tropical convex hull
for the partition with the least L. We obtain two
vectors, u = (0.4 0.3 0.6) and w(1) = (0.8 0.7 1).
These are the points depicted in Figure 8. The point
w(1) lies on the back side of the cube, whereas u lies
at the bottom. These two points are connected by
the tropical segment.
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Figure 8: The tropical convex hull for the secure
partition L = ∅,K = {1, 2, 3}

Similarly, we compute the generators for the next
secure partitions (using Theorem 3.2. and Corollary
3.4.). The eigenspace for partition L = {2},K =
{1, 3} is a tropical convex hull of vectors u =
(0.3 0 0.5), v(2) = (0.4 0.3 0.6), w(1) = (0.4 0 0.6).
The generators of the eigenspace for the partition
L = {1, 2},K = {3} are vectors u = (0 0 0.3),
v(1) = (0.3 0 0.5), v(2) = (0 0.2 0.3). And, fi-
nally, the greatest background eigenvector for par-
tition L = ∅,K = {1, 2, 3} is (0.1 0.2 0.3).

Observe, that the differences between each pair
of coordinates of the generators depicted in Figure
8 equal to 0.4, therefore the tropical segment is the
segment parallel to the body diagonal of the univer-
sal set (every coordinate decreases by the same rate,
notice the similarity to the graphical representation
of the two-dimensional segment). As an example of
not that simple segment we can take another two
vectors, for example, two generators of the hull for
the partition L = {2},K = {1, 3}, u and v(2), de-
picted in Figure 9 (in fact figure represents the block
located under the highlighted cube from Figure 7).
These two points are also connected by the tropi-
cal segment. The point v(2) lies on the top of the
block and the point u lies right on the bottom left
edge. Beginning from v(2), the segment is, again,
parallel to the body diagonal of the universal set
till it reaches the point b = (0.3 0.2 0.5). From now,
the only one coordinate, y, should decrease - the
segment continues vertically down.

5. Conclusions

The study of eigenspace of a matrix in max-
Łukasiewicz fuzzy algebra was introduced and the
solution of the eigenproblem was provided on sev-
eral examples together with the graphical represen-
tation of the solution sets.

Figure 9: The tropical segment for three dimensions
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