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Abstract

The aim of this contribution is to discuss the charac-
terizations of L-semilinear spaces which are gener-
ated by strong linearly independent vectors. First,
we show that the basis in L-semilinear spaces which
are generated by strong linearly independent vectors
is also strong linearly independent. Then we prove
that the analogue of the Kronecker-Capelli theorem
is valid for systems of equations.
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1. Introduction

The study of semilinear structures over zerosumfree
semirings has a long history. In 1979, Cuninghame-
Green built a theory similar to that of linear alge-
bra in min-plus algebra, for instance in [5], systems
of linear equations, eigenvalue problems, indepen-
dence, rank and dimension. Since then, a number
of works on semilinear structure over zerosumfree
semirings were published (see e.g. [2, 3, 4, 10, 11]).
In 2007, Di Nola et al. used the notions of semir-
ings and semimodule to introduce the concept of
semilinear space in the MV-algebraic setting, and
obtained some similar results as those of classical
linear algebras (see [7]). In 2010, Perfilieva and
Kupka showed that the necessary condition of the
Kronecker-Capelli theorem is valid for systems of
equations in a semilinear space of n-dimensional
vectors (see [12]), Zhao and Wang gave a sufficient
condition that each basis in similinear spaces of n-
dimensional vectors has the same number of ele-
ments over commutative zerosumfree semirings (see
[20]), moreover, 1n 2011, they obtained a neces-
sary and sufficient condition that each basis has the
same number of elements over join-semirings (see
[21]), where a join-semiring is just a kind of zero-
sumfree semiring. In 2011, Shu and Wang showed
some necessary and sufficient conditions that each
basis has the same number of elements over com-
mutative zerosumfree semirings and proved that a
set of vectors is a basis if and only if they are stan-
dard orthogonal (see [15]). In 2012, Shu and Wang
showed that a set of linearly independent non stan-
dard orthogonal vectors can not be orthogonalized
if it has at least two nonzero vectors, and proved
that the analog of the Kronecker-Capelli theorem
was valid for systems of equations when the column

vectors of coefficient matrix was standard orthogo-
nal(see [16]). It is obvious that the problem is still
open if the column vectors of coefficient matrix is
not standard orthogonal. In this paper, we shall in-
vestigate it when the column vectors of coefficient
matrix is strong linearly independent. First, we will
show that the basis in L-semilinear spaces which are
generated by strong linearly independent vectors is
also strong linearly independent. Then we prove
that the analogue of the Kronecker-Capelli theorem
is valid for systems of equations.

2. Semilinear Spaces

In this section, we give some definitions and prelim-
inary lemmas.

Definition 2.1 ( Golan [8],Zimmermannn[22])
A semiring L = 〈L,+, ·, 0, 1〉 is an algebraic struc-
ture with the following properties:
(i) (L,+, 0) is a commutative monoid,
(ii) (L, ·, 1) is a monoid,
(iii) r · (s+ t) = r · s+ r · t and (s+ t) · r = s · r + t · r
hold for all r, s, t ∈ L,
(iv) 0 · r = r · 0 = 0 holds for all r ∈ L,
(v) 0 6= 1.

A semiring L is commutative if r · r′ = r′ · r for
all r, r′ ∈ L. A semiring L is called zerosumfree if
a + b = 0 implies that a = b = 0 for any a, b ∈ L.

Example 2.1 L = 〈R ∪ {−∞},+, ·,−∞, 0〉 is a
semiring, where a + b = max{a, b} and a · b = a + b
for a, b ∈ R ∪ {−∞} in which the last + stands for
the usual addition of real numbers.

Note that the semiring L = 〈R ∪
{−∞},+, ·,−∞, 0〉 is usually called a max-plus
algebra or a schedule algebra (see e.g. [1, 2, 6]).

Example 2.2 It is clear that N with the usual op-
erations of addition and multiplication of integers is
a commutative zerosumfree semiring.

Example 2.3 (Zhao and Wang [20]) The fol-
lowing are examples of commutative zerosumfree
semirings:
(i) The real interval [0, 1] under the operations
a + b = max{a, b} and a · b = min{a, b} for all
a, b ∈ [0, 1];
(ii) The nonnegative real numbers with the usual
operations of addition and multiplication;

16th World Congress of the International Fuzzy Systems Association (IFSA) 
9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT) 

© 2015. The authors - Published by Atlantis Press 112



(iii) The nonnegative integers under the operations
a + b = g.c.d.{a, b} and a · b = l.c.m.{a, b} for
nonnegative integers a and b, and g.c.d. (resp.
l.c.m.) stands for the greatest (resp. least) common
divisor (resp. multiple) between a and b.

Definition 2.2 (Zimmermannn[22]) Let
L = 〈L,+, ·, 0, 1〉 be a semiring and let
A = 〈A,+A, 0A〉 be a commutative monoid.
If ∗ : L× A → A is an external multiplication such
that
(i) (r · r′) ∗ a = r ∗ (r′ ∗ a),
(ii) r ∗ (a +A a′) = r ∗ a +A r ∗ a′,
(iii) (r + r′) ∗ a = r ∗ a +A r′ ∗ a,
(iv) 1 ∗ a = a,
(v) 0 ∗ a = r ∗ 0A = 0A

for all r, r′ ∈ L and a, a′ ∈ A then
〈L,+, ·, 0, 1; ∗;A,+A, 0A〉 is called a left L-
semimodule. The definition of right L-semimodule
is analogous, where the external multiplication is
defined as a function A× L → A.

The following definition is a general version of
that of a semilinear space in [7]:

Definition 2.3 Let L = 〈L,+, ·, 0, 1〉 be a semir-
ing. Then a semimodule over L is called an L-
semilinear space.

Note that in Definition 2.3, a semimodule stands
for a left L-semimodule or a right L-semimodule as
in [7]. Elements of an L-semilinear space will be
called vectors and elements of a semiring scalars.
The former will be denoted by bold letters to dis-
tinguish them from scalars.
Without loss of generality, in what follows, we

consider left L-semimodules for convenience of no-
tation. Let n = {1, · · · , n}. Then we can construct
an L-semilinear space as follows.

Definition 2.4 (Di Nola et al.[7]) Let
〈L,+, ·, 0, 1; ∗;A,+A, 0A〉 be an L-semilinear
space. The expression

λ1a1 +A · · ·+A λnan,

where λ1, · · · , λn ∈ L are scalars is called a linear
combination of vectors a1, · · · ,an ∈ A.

Example 2.4 (Shu and Wang, 2011) Let
L=〈L,+, ·, 0, 1〉 be a semiring. For each n > 1, let

Vn(L) = {(a1, a2, · · · , an)T : ai ∈ L, i ∈ n}.
Define

x+ y = (x1 + y1, x2 + y2, · · · , xn + yn)T ,

r ∗ x = (r · x1, r · x2, · · · , r · xn)T

for all x = (x1, x2, · · · , xn)T ,y =
(y1, y2, · · · , yn)T ∈ Vn(L) and r ∈ L,
where (x1, x2, · · · , xn)T denotes the trans-
pose of (x1, x2, · · · , xn). Then Vn =
〈L,+, ·, 0, 1; ∗;Vn(L),+,0n×1〉 is an L-semilinear
space with 0n×1 = (0, 0, · · · , 0)T .

From now on, without causing confusion we use
ra instead of r ∗ a for all r ∈ L and a ∈ A in an
L-semilinear space 〈L,+, ·, 0, 1; ∗;A,+A, 0A〉.

Definition 2.5 (Di Nola et al., 2007) In L-
semilinear space, a single vector a is linearly
independent. Vectors a1,· · · ,an, n > 2, are linearly
independent if none of them can be represented by
a linear combination of the others. Otherwise, we
say that vectors a1, · · · ,an are linearly dependent.
An infinite set of vectors is linearly independent if
any finite subset of it is linearly independent.

Remark 2.1 In general, the cardinality of a basis
is not unique (see e.g. [7, 15, 20, 21]).

We denote by Mm×n(L) the set of all m× n ma-
trices over a semiring L=〈L,+, ·, 0, 1〉. Especially
let Mn(L) = Mn×n(L). Given A = (aij)m×n, B =
(bij)m×n ∈ Mm×n(L) and C = (cij)n×l ∈ Mn×l(L),
we define that

A + B = (aij + bij)m×n,

AC = (
∑

k∈n

aik · ckj)m×l,

λA = (λaij)m×n for all λ ∈ L.

Then 〈Mn(L),+, ·, On, In〉 is a semiring with

On =




0 0 · · · 0
0 0 · · · 0

· · · · · ·
0 0 · · · 0


 and In =




1 0 · · · 0
0 1 · · · 0

· · · · · ·
0 0 · · · 1


 .

A nonempty subset G of an L-semilinear space is
called a set of generators if every element of the L-
semilinear space is a linear combination of elements
in G (see [6]). Let S be a set of generators of L-
semilinear space A. Then denote as A = 〈S〉.

Definition 2.6 (Golan, 1999) A linearly inde-
pendent set of generators of an L-semilinear space
A is called a basis of A.

Definition 2.7 (Golan, 1999) An element a ∈
L is called invertible in a semiring L if there exists
an element b ∈ L such that ab = ba = 1. Such
element b is called an inverse of a, it is clear that
the inverse of a is unique, then denote it by a−1.
Let U(L) denote the set of all invertible elements in
a semiring L.

Definition 2.8 (Wang and Shu, 2014) In Vn,
vectors a1,· · · ,an are semi-linearly dependent if and
only if there exist two nonempty disjoint subsets of
indices J1 ⊂ n and J2 ⊂ n together with 0 6= λi ∈
L, i ∈ J1 ∪ J2, such that

∑
j∈J1

λjaj =
∑

j∈J2
λjaj

with either | J1 |, | J2 |≥ 2 or if | Ji |= 1 for some
i ∈ {1, 2} then λj /∈ U(L) for every j ∈ Ji .
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Note that if a set of vectors is semi-linearly de-
pendent, then it is linearly independent. In gen-
eral, the converse is not true. For example, vectors


1
0
0
0


 ,




0
1
0
0


 ,




0
0
1
0


 ,




0
0
0
1


 are linearly inde-

pendent and not semi-linearly dependent. Some au-
thors defined linear dependence of vectors as that:
vectors a1,· · · ,an, n > 2, are linearly dependent if
and only if there exist two nonempty disjoint sub-
sets of indices J1 ⊂ n and J2 ⊂ n together with
0 6= λi ∈ L, i ∈ J1 ∪ J2, such that

∑
j∈J1

λjaj =∑
j∈J2

λjaj (see e.g. [8]). This definition means
that if a set of vectors is linearly dependent if and
only if it is either linearly dependent in the sense
of Definition 2.5 or semi-linearly dependent in the
sense of Definition 2.8.

Definition 2.9 (Wang and Shu, 2014) In Vn,
a single vector a is strong linearly independent. Vec-
tors a1,· · · ,an, n > 2, are strong linearly indepen-
dent if and only if they are linearly independent and
not semi-linearly dependent.

3. Bases in L-semilinear spaces which are
generated by strong linearly independent
vectors

Definitions 2.8 and 2.9 we know that, every set of
linearly independent vectors either strong linearly
independent or semi-linearly dependent. And on
the other hand, it is clear that a standard orthogo-
nal vectors are strong linearly independent, but the
converse is not true (see [17, 19]). We know that
in L-semilinear space over commutative semirings
which are generated by standard orthogonal, the
basis is standard orthogonal, which is different with
the conclusion in classical algebra. A natural ques-
tion to ask now is: if the set of generators of an
L-semilinear space is strong linearly independent,
what about the other bases? In this section, we shall
solve this problem under certain condition. In what
follows, we always suppose that L = 〈L,+, ·, 0, 1〉 is
a commutative zerosumfree semiring.

Definition 3.1 (Golan, 1999) An element a in a
semiring L is said to be cancellable if and only if
a + b = a + c implies b = c for every b, c ∈ L. We
denote the set of all cancellable elements of L by
K+(L).

We now present another weak version of the con-
dition of having an additive inverse. Set W (L) =
{a ∈ L: for every b ∈ L there exists an element
r of L such that either a + r = b or a = b + r}.
Clearly W (L) is nonempty since V (L) ⊆ W (L). If
W (L) = L then the semiring L is said to be yoked
(see [8]).

Definition 3.2 (Golan [8]) A nonzero element a
of a semiring L is a left zero divisor if and only

if there exists a nonzero element b of L satisfying
ab = 0. It is a right zero divisor if and only if there
exists a nonzero element b of L satisfying ba = 0. It
is a zero divisor if and only if it is both a left and
a right zero divisor. A semiring L having no zero
divisor is said to be entire.

Definition 3.3 (Kuntzman, 1972) Let
A ∈ Mn(L). Denote P (resp. Q) the set of
even (resp. odd) permutations of the set n. A
bideterminant det(A) of A is an ordered pair

det(A) = (det1(A), det2(A))

such that det1(A), det2(A) ∈ L with

det1(A) =
∑

σ∈P

a1,σ(1)a2,σ(2) · · · an,σ(n)

and

det2(A) =
∑

σ∈Q

a1,σ(1)a2,σ(2) · · · an,σ(n).

Note that if det1(A) = det2(A), then det(A) ≡ 0
(see [19]). Otherwise, we use symbols det(A) 6≡ 0.

Lemma 3.1 (Shu and Wang, 2013) In a can-
cellative, yoked and entire semiring L, let W =
〈x1,x2, · · · ,xt〉, where x1,x2, · · · ,xt are strong lin-
early independent in Vn. Then every a ∈ W, can
be uniquely represented by a linear combination of
x1,x2, · · · ,xt.

Lemma 3.2 (Poplin et al., 2004) If A,B ∈
Mn(L), then

det1(AB) + det1(A)det2(B) + det2(A)det1(B)

= det2(AB) + det1(A)det1(B) + det2(A)det2(B).

Lemma 3.3 (Wang and Shu, 2014) In a can-
cellative, yoked and entire semiring L, let A =
(aij) ∈ Mn(L). Then det(A) ≡ 0 if and only if
the column-vectors of A are linearly dependent or
semi-linearly dependent.

Theorem 3.1 In a cancellative, yoked and en-
tire semiring L, let W = 〈x1,x2, · · · ,xs〉 with
{x1,x2, · · · ,xs} a set of strong linearly independent
vectors in Vn. If {y1,y2, · · · ,yp} is a basis of W,
then y1,y2, · · · ,yp are strong linearly independent
and s = p.

Proof. If By Lemmas 3.1 we can prove that s = p.
Let yi =

∑s
j=1 aijxj with aij ∈ L for any i ∈ s.

Thus

(y1,y2, · · · ,ys) = (x1,x2, · · · ,xs)A (1)

with

A =




a11 · · · as1

· · · · · · · · ·
a1s · · · ass


 .
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Since y1,y2, · · · ,ys are linearly independent, then
every column of A has nonzero element. In a similar
way, we can let

(x1,x2, · · · ,xs) = (y1,y2, · · · ,ys)B

with B = (bji), bji ∈ L, i, j ∈ s, and every row of B
has nonzero element. Therefore,

(x1,x2, · · · ,xs) = (x1,x2, · · · ,xs)AB. (2)

Since {y1,y2, · · · ,ys} is linearly independent,
then by Definitions 2.8 and 2.9, we know that
{y1,y2, · · · ,ys} is either strong linearly indepen-
dent or semi-linearly dependent. If it is semi-
linearly dependent, then by Definition 2.8, there ex-
ist two disjoint subsets of indices J1 ⊂ n and J2 ⊂ n
together with 0 6= λj ∈ L, j ∈ J1 ∪ J2, such that∑

j∈J1
λjyj =

∑
j∈J2

λjyj with | J1 |, | J2 |≥ 2 or
there exists | Ji |= 1, i ∈ {1, 2} such that if j ∈ Ji,
then λj /∈ U(L). Thus

∑

j∈J1

λj(
s∑

k=1

ajkxk) =
∑

j∈J2

λj(
s∑

k=1

ajkxk), (3)

where | J1 |, | J2 |≥ 2 or if | Ji |= 1 for some
i ∈ {1, 2} then λj /∈ U(L) for every j ∈ Ji. In the
first case, | J1 |, | J2 |≥ 2, then we have

∑

j∈J1

λjaj1x1 + · · ·+
∑

j∈J1

λiajsxs

=
∑

j∈J2

λjaj1x1 + · · ·+
∑

j∈J2

λjajsxs.

Since x1,x2, · · · ,xs are strong linearly indepen-
dent, then

∑
j∈J1

λjajk =
∑

j∈J2
λjajk with k ∈

s. Let c1, c2, · · · , cs be column-vectors of A.
Then it is obvious that

∑
j∈J1

λjcj =
∑

j∈J2
λjcj ,

i.e.,{c1, c2, · · · , cs} is linearly dependent or semi-
linearly dependent. Thus by Lemma 3.3, we have
det(A) ≡ 0, i.e. det1(A) = det2(A). In the other
hand, by Lemma 3.2 and Definition 3.3 we have

det1(AB) + det1(A)det2(B) + det2(A)det1(B)
= det2(AB) + det1(A)det1(B) + det2(A)det2(B)
= det2(AB) + det2(A)det1(B) + det1(A)det2(B).

By K+(L) = L, it is clear that det1(AB) =
det2(AB), i.e. det(AB) ≡ 0. But by Eq.(2),
Lemma 3.1 we have AB = Is, i.e. det(AB) 6≡ 0,
a contradiction. In the second case, there exists
| Ji |= 1, i ∈ {1, 2} such that if j ∈ Ji, then
λj /∈ U(L), say | J1 |= 1. Then in similar to the
proof of the first case, we can prove that this case
dose not exist. Therefore by the discuss as above,
we know that {y1,y2, · · · ,ys} is strong linearly in-
dependent.
By Theorem 3.1, we have the following statement

Corollary 3.1 In a cancellative, yoked and en-
tire semiring L, let W = 〈x1,x2, · · · ,xs〉 with

{x1,x2, · · · ,xs} a set of semi-linearly dependent
vectors in Vn. If {y1,y2, · · · ,yp} is a basis of
W, then y1,y2, · · · ,yp are also semi-linearly depen-
dent.

c1

c@
@

@

ac¡
¡

¡

b

c@
@

@

¡
¡

¡

0

Fig. 1

Note that in Theorem 3.1 the condition of semir-
ing L is cancellative, yoked and entire can not be
deleted generally. For instance, over semiring as
Fig. 1, it is obvious that L is not cancellative,
yoked and entire. Then it is easy to see that in
V2, {

(
1
0

)
,
(

0
1

)
} and {

(
a
0

)
,
(

b
0

)
,
(

0
a

)
,

(
0
b

)
} are equivalent and linearly independent.

However, {
(

1
0

)
,
(

0
1

)
} is a set of strong linearly

independent, but {
(

a
0

)
,
(

b
0

)
,
(

0
a

)
,
(

0
b

)
}

is semi-linearly dependent.
By Theorem 3.1, we also have

Corollary 3.2 In an L-semilinear space Vn, if
semiring L is cancellative, yoked and entire, then
each basis has the same number of elements.

Lemma 3.4 (Tan [18]) Let A,B ∈ Mn(L). If A
is invertible, then det(AB) = det(A) · det(B) and
det(BA) = det(B) · det(A).

Lemma 3.5 (Tan [18]) Let A,B ∈ Mn(L). If
AB = In, then
(1)aijaik = ajiaki = bijbik = bjibki = 0 for any
i, j, k ∈ n with j 6= k;
(2)(

∑
k∈n aik)(

∑
l∈n bli) = (

∑
k∈n akj)(

∑
l∈n bjl) =

1 for any i, j ∈ n.

Theorem 3.2 Let A ∈ Mn(L). If L is entire, then
A is invertible if and only if there exists a permuta-
tion matrix P ∈ Mn(L) such that PA is an invert-
ible diagonal matrix.

Proof. Suppose that A is invertible. Then there
exists a matrix B in Mn(L) such that AB = In.
From Lemma 3.4, we have det(A) ∈ U(L), thus ev-
ery column of A has a nonzero element and every
row of A has a nonzero element. By Lemma 3.5,
every column and every row of A has exact one in-
vertible and the others are zeros. Thus there exists
a permutation matrix P ∈ Mn(L) such that PA is
an invertible diagonal matrix. The converse part
directly comes from the hypothesis.
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Lemma 3.6 (Shu and Wang [15]) In L-
semilinear space Vn, each basis has the same
number of elements if and only if every vector can
be uniquely represented by a linear combination of
a basis.

Theorem 3.3 In a cancellative, yoked and en-
tire semiring L, let W = 〈x1,x2, · · · ,xs〉 with
{x1,x2, · · · ,xs} a set of strong linearly independent
vectors in Vn. If y1,y2, · · · ,yp ∈ W, then the fol-
low statements are equivalent:
(1){y1,y2, · · · ,yp} is a basis of W;
(2) There exists an invertible generalized diagonal
matrix A ∈ Mn(L) such that (y1,y2, · · · ,yp) =
(x1,x2, · · · ,xs)A and p = s.

Proof. By Lemma 3.1, it is clear that s = p. Let
yi =

∑s
j=1 aijxj with aij ∈ L for every i ∈ s. Thus

(y1,y2, · · · ,ys) = (x1,x2, · · · ,xs)A

with

A =




a11 · · · as1

· · · · · · · · ·
a1s · · · ass


 .

In a similar way, we can let

(x1,x2, · · · ,xs) = (y1,y2, · · · ,ys)B

with

B =




b11 · · · bs1

· · · · · · · · ·
b1s · · · bss


 , bji ∈ L, i, j ∈ s

since {x1,x2, · · · ,xs} is a basis of W by Definition
2.6. Therefore,

(x1,x2, · · · ,xs)
= (x1,x2, · · · ,xs)AB

= (x1,x2, · · · ,xs)Is.

By Lemmas 3.1 and 3.6, AB = Is.

4. Generalized Kronecker- Capelli theorem

In this section, we shall prove that the Kronecker-
Capelli theorem for a matrix equation is valid over
a commutative zerosumfree semiring.

Definition 4.1 (Shu and Wang [16]) Let A ∈
Mn×m(L). We call the dimension (if it exists) of
column (resp. row) space of A the column (resp.
row) rank of A, denoted by rc(A) (resp. rr(A)).
If rc(A) = rr(A), then we say that the rank of A,
written r(A), is rc(A) or rr(A).

Let A = (aij) ∈ Mn×m(L) and b =
(b1, b2, · · · , bn)T ∈ Mn×1(L). Consider the follow-
ing system of equations





a11x1 + · · ·+ a1nxn = b1,
a21x1 + · · ·+ a2nxn = b2,
· · ·
an1x1 + · · ·+ annxn = bn

(4)

with respect to an unknown vector x =
(x1, x2, · · · , xn)T ∈ Vn. Denote the column vectors
of A by a1,a2, · · · ,an. Obviously, they are elements
of Vn.

Lemma 4.1 In a cancellative, yoked and entire
semiring L, vectors a1, · · · ,an+1 ∈ Vn(L) are ei-
ther linearly dependent or semi-linearly dependent.

The following theorem is the Kronecker-Capelli
theorem for system (4) over a commutative zero-
sumfree semiring.

Theorem 4.1 In a cancellative, yoked and entire
semiring L, let a1,a2, · · · ,an be strong linearly in-
dependent. For every r ∈ L, if det(A) 6= rdet(Di)
with i ∈ n, then system (4) is solvable if and only
if r(A) = r(Ab), where the matrix Ab is equal to
A extended by b as the last column and Di is the
matrix formed by replacing the i−th column of A
by the column vector b. Moreover, if system (4) is
solvable, then it has a unique solution.

Proof. If system (4) is solvable, then it is clear
that rc(A) = rc(A)b = rr(A) = rr(A)b = n,
i.e.,r(A) = r(Ab). So we just need to prove the suf-
ficiency. If r(A) = r(Ab), then by Lemma 4.1 and
Definition 4.1 we have that vectors a1,a2, · · · ,an,b
are linearly dependent. If b can be represented
by a linear combination of a1,a2, · · · ,an, then sys-
tem (4) is solvable. If there exists i ∈ n such
that ai can be represented by a linear combina-
tion of a1, · · · ,ai−1,ai+1 · · · ,an,b. Say a1 = kb+∑

j 6=1,j∈n kjaj with k, kj ∈ L, j 6= 1, j ∈ n. Then
we have

det(A) = det(kb+
∑

j 6=1,j∈n

kjaj ,a2, · · · ,an)

= kdet(b,a2, · · · ,an)

+
∑

j 6=1,j∈n

kjdet(aj ,a2, · · · ,aj , · · · ,an).

Therefore we can prove that

det1(A) + kdet2(D1) +
∑

j 6=1,j∈n

kjdet2(Dj)

= det1(A) + kdet1(D1) +
∑

j 6=1,j∈n

kjdet1(Dj)

and
∑

j 6=1,j∈n kjdet1(Dj) =
∑

j 6=1,j∈n kjdet2(Dj).
Thus det(A) = kdet(D1), a contradiction. There-
fore if r(A) = r(Ab) then system (4) is solvable.
By Lemma 3.1, we also know that system (4) has a
unique solution.

5. Conclusions

In this contribution, we have shown some neces-
sary and sufficient conditions that a set of vec-
tors is a basis of an L-semilinear subspace which
is generated by strong linearly independent vectors
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and have proven that the analog of the Kronecker-
Capelli theorem is valid in an L-semilinear vector
space. It is worth to point out that we just dis-
cuss the L-semilinear subspace which is generated
by strong linearly independent vectors. Therefore,
it remains open whether there are other conditions
under which the similar results hold.
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