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Abstract  

The paper proposes a novel fuzzy system structure to 
enhance the performance of fuzzy neural network 
systems. The structure of enhanced fuzzy system (EFS) 
is to decompose each fuzzy variable into fuzzy sub-
systems called component fuzzy systems to act as type 
2 fuzzy, and each component fuzzy system is based on 
one traditional fuzzy set with one pair of symmetry 
fuzzy sets. In addition, in order to illustrate the 
performance of EFS, the paper utilizes the common 
back propagation learning algorithm for neural 
networks in the identification of dynamic systems. 
From simulation results, it is evident that the proposed 
EFS have much faster convergent speed in terms of 
epochs in the tracking model and better testing error 
than those of using other identification methods. 
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1. Introduction  

In recent years, increasing attention has been given to 
fuzzy systems in the field of system identification and 
control because of its simplicity and flexibility. The 
stability analysis and design of fuzzy control systems 
had been proposed by using a Lyapunov function 
candidate in [1]. This kind of fuzzy control 
methodology is employed in many control design 
applications as adaptive fuzzy control [2], sliding fuzzy 
control [3], fuzzy backstepping control [4], etc. Besides, 
several self-structuring algorithms have been proposed 
to obtain a possible and appropriate antecedent-part. 
Since the antecedent-part design is of free structure, the 
self-structuring algorithm is difficult to mathematically 
explain. For this reason, the derivative free based 
optimization approaches are often used in the self-
structuring learning algorithm design. However, the IF-
Then rules in systems with a high degree of uncertainty 
are hard to define properly. When the rules cannot 
clearly be defined, the capability of function 
approximation may not be good enough and the 
learning results may not be efficient. To overcome this 
problem, Zadeh introduced the type-2 fuzzy logic 
systems in 1975 [5]. 

 
 

It can be found that because the type-2 fuzzy system 
(FS) can provide more design degrees of freedom and 
parameters, it is usually proposed to handle higher 
degree of uncertainties. In general, the membership 
function of the type-2 FS is of three dimensions that 
include upper membership function (MF), lower MF, 
and a footprint of uncertainty (FOU). Upper and lower 
MFs are similar to the type-1 MFs, and FOU can 
provide an additional degree of freedom that makes the 
type-2 FS possible to handle uncertainties directly. 
However, there is no any idea on how to make the best 
choice on these secondary (Upper or lower) MFs. 
Although most researchers indicated that the 
performance of type-2 FS could be better than that of 
the type-1 FS, the computational cost associated with 
type-2 FS is high. Thus, a simplified type-2 FS [6-10] 
called the interval type-2 FS was proposed. The 
performance of interval type-2 FS can achieve similar 
results with traditional type-2 FS, but the computational 
cost is greatly reduced. The only difference is that the 
output processing includes an extra type-reducer, which 
is employed to convert type-2 FS into a type-1 FS. Then, 
it can be processed by using the defuzzifier to obtain a 
crisp value output. Although type-reducer is an easy 
way to resolve a complicated computation problem, the 
design degrees of freedom are also restricted. This 
paper proposes a novel fuzzy structure called enhanced 
fuzzy system (EFS). This structure is originally 
proposed to replace a traditional fuzzy system and is 
employed for control [11]. In the structure, the fuzzy 
variables are decomposed into several subsets and each 
subset includes one traditional fuzzy set with one pair 
of symmetry fuzzy sets. To combine all variables forms 
the so-called component fuzzy systems. The structure 
of EFS is proposed to facilitate minimum distribution 
learning effects among component fuzzy systems so 
that the learning capability can be very efficient. In this 
paper, we also use this idea to consider type-2 FS. It can 
be found that the idea is simple and straightforward and 
without introducing any extra operation it can still 
achieve high degree of uncertainty. 
This paper is divided into five main sections. Section 1 
provides some background information about the EFS. 
Section 2 outlines the method of the EFS and interval 
type-2 fuzzy systems. The structure of enhanced fuzzy 
systems (EFSs) is included in Section 3. Section 4 
presents an example to verify the effectiveness of the 
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proposed method. Finally, conclusive remarks are given 
in Section 5. 

2. Interval Type-2 fuzzy system and Enhanced 
fuzzy system 

In this section, a brief overview and discussion of type-
2 fuzzy system is presented. The interval type-2 FS is of 
three dimensions that includes upper membership func-
tion, lower membership function, and a footprint of un-
certainty (FOU). The interval type-2 membership func-
tion is shown in Fig. 1. The structure of the interval 
type-2 FS is shown in Fig. 2. In the architecture of en-
hanced fuzzy system, the fuzzy variable is decomposed 
into sN  layers, and each layer includes one type-1 

fuzzy sets with one pair symmetrical fuzzy sets, as 
shown Fig. 3. (1)

2 _1A  is presented as an original fuzzy set. 

(1)
1_1A  and (1)

3_1A  are the complement fuzzy sets. Then, all 

possible combinations of those layers can form 

( )n
c sN N  fuzzy sub-systems. n is the number of in-

put fuzzy variables. It can be seen that each fuzzy sub-
system is of parallel processing can is independence to 
others in the learning process.  
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Fig. 1: Illustration of an interval type-2 membership function 
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Fig. 2: Structure of the interval type-2 fuzzy systems 
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Fig. 3: Antecedent-part design of EFS 

 
Now, the l-th fuzzy IF-THEN rule of the s-th sub-
system is expressed as 

( ), ( ),
( ), 1 1 2 2

( ),
( ),

:If is and is and

.... is Then is

s l s l
s l

s l
n n p s l

R x A x A

x A y 
,         (1) 

where 1 2,[ , ..., ]T n
nx x x R x  is the input variable vector 

and py  is the output variable. l is fuzzy number. ( ),s l
nA  

and ( ),s l  are the corresponding input and output fuzzy 

sets. ( ),
1, ,

s l
j j nA    are those ( )

_ 1, , ; 1,...,3
s

k j j n kA    in Fig. 2. 

Note that in this study, those ( ),s l ’s are fuzzy single-

tons and are parameters to be tuned in the learning pro-
cess. According to the center-average defuzzification 
and the product inference, the output 

( )p sy  of the fuzzy 

sub-system is 

( ),

( ),

( ),
1 1

( ) ( ) ( )

1 1

( )

[ ( )]

r

s l
j

r

s l
j

N n

s l jA
l j T

p s s sN n

jA
l j

μ x

y
μ x


 

 

 
 
  

 

 
θ ω       (2) 

where ( ), ( )s l
j

jA
μ x  is the membership function values of 

the fuzzy sets ( ),s l
jA  and (3)n

rN   is the IF-THEN 

rules in one fuzzy sub-system. 

( ) ( ),1 ( ),2 ( ),[ , , , ]
r

T
s s s s N  θ   is the adjustable parameter 

vector. ( ) ( ),1 ( ),2 ( ),[ , , , ]
r

T
s s s s N  ω   is a fuzzy basis 

vector, where 
( ),s l  is expressed as 

( ),

( ),

1
( ), 1,2, ,

1 1

( )

( )

d l
j

r r

d l
j

n

jA
j

s l l N N n

jA
l j

μ x

μ x
 



 







.             (3) 

The average of the outputs of all fuzzy sub-systems is 
calculated as the output of the enhanced FS hence the 
output 

pfy  of all fuzzy sub-systems can be defined as 
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( ) ( )
1

( ( )) /
cN

pf f d d c
d

y y N


  x θ ,            (4) 

where ( )n
c dN N  is the number of fuzzy sub-

systems. The general term of (4) can be represented as  

( )
1

cN

pf f d c
d

y y 


  ,                          (5) 

where 
1

1
cN

c
d




 . However, there is no way of evaluat-

ing which fuzzy sub-systems may be more important 
than the others. Thus, in this study, those fuzzy sub-
systems are equally treated and then will have the same 
weights; that is, 1 /c cN   as in (5). 

From the above structure, it can be observed that the 
proposed structure is to use a fuzzy system (an original 
fuzzy and its complement fuzzy sets) to model the type-
2 fuzzy. Thus, the modeling of a type-2 fuzzy becomes 
the modeling of a component fuzzy system. It also can 
be found that the reasoning process of EFS is the same 
as the original fuzzy system. Thus, it can be said that 
the proposed system can model type-2 fuzzy without 
extra operations in the type reduction. From later simu-
lation, it can also be found that the proposed system can 
indeed provide a better modeling performance than the 
original type-2 fuzzy system does. 

3. Enhanced Fuzzy Neural Network System 

Fuzzy neural network systems [12-14] have been wildly 
used in the identification of unknown models. The aim 
of the study is to propose a new structure as the en-
hanced fuzzy system. The detailed algorithm of en-
hanced fuzzy neural network system (EFNNS) is intro-
duced in this section. 
3.1. Layered Operation of the Enhanced Fuzzy 

Neural Network System 

In this part, the algorithm of the enhanced fuzzy neural 
network systems is divided into four layers including 
the input layer, the linguistic term layer, the rule layer, 
and the output layer. We are going to describe respec-
tively in the following. 

Layer 1 (Input layer): For the j th node of the layer one, 

each node represents an input linguistic variable 
jx , 

1 2, , ,j nx x x x  . 
1
( ),s j jO x .                               (6) 

Layer 2 (Linguistic term layer): A commonly-used tri-
angular membership function is used for each node 
in this layer. Those layers perform the fuzzification 
process. For the jth fuzzy sets ( ),

1,...,|s l
j j nA   in the 

input variable jx , the membership function is ex-

pressed as 

( ,)

1 2
( ), ( ),( )d l

j
s j d jA

μ O O .                    (7) 

Layer 3 (Rule layer): The nodes in this layer are called 
rule nodes and perform the product operation. Thus, 
the jth rule node describes as  

3 2
( ), ( ),

1

n

s j s j
j

O O


                          (8) 

Layer 4 (Output layer):  In this layer, each node corre-
sponds to one output node. This layer performs the 
defuzzification process. The node operations are  

3
( ), ( ),

4 1 1

3
( ),

1

c r

r

N N

d l s j
s l

pf N

c s j
l

O
O

N O


 







,                     (9) 

where 
( ),s l  is the adjustable parameter vector and l  is 

the rule number. 

3.2. Learning Algorithm 

Consider the single-output case. The task is to minimize 
the cost function  

2 2

1

1 1
( ) [ ( ) ( )] [ ( )]

2 2

P

pf
k

E k d k y k e k


   ,   (10) 

where ( )d k  is the desired output for pattern k  and 
4( )pf p fy k O  is the current output of the enhanced 

fuzzy system for pattern k . P  is the training pattern 
number. By using back propagation learning algorithm, 

( )tθ  can be adjusted in the training process at time t. 

Thus, the weight update law of back propagation algo-
rithm can be writing as  

( )
( 1) ( ) ( ) ( ) ( )

( )l

E t
t t t t

t





      


θ θ θ θ ,   (11) 

where   is the learning rate and θ is tuning parameters 

of the EFS. Then, the gradient of ( )E t  is  

( )( ) ( )

( ) ( ) ( )

( )
( ) ( ) ( )

( )

pf

l pf l

pf

l

y tE t E t

t y t t

y t
e t e t t

t

 



 


  


   


ω

                 (12) 

where ( ) ( ) ( )pfe t d t y t  . 

It should be noted that the idea of using EFS is to have 
fixed an antecedent part. Thus, the back propagation 
learning algorithm is applied to the consequence part 
only. Thus, with (5) and (10), the weight update law can 
be expressed as 

( )
( 1) ( )

( )

( )( )
( ) ( ) ( ) ( )

( ) ( )

l

pf

pf l

E t
t t

t

y tE t
t t e t t

y t t



 



  




   
 

θ θ
θ

θ θ ω

  (13) 

4. Simulation results 

Considering the use of the EFS for identification of 
dynamic systems. The following nonlinear plant is 
considered 

2( 1) ( ) ( 1)p P Py k P y k Q y k     .      (14) 
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Eq.(14) produces a chaotic strange attractor with 
1 .4P   and 1 .4Q  . In this example, the inputs are 

( )py t
 
and ( 1)py t   and the output is ( 1)py t  . The 

initial states is [ (0 ), (1)] [0 .4, 0 .4 ]p py y  . There are 

2000 patterns in which 1000 patterns are used for 
training and the remaining 1000 patterns are used for 
testing. Fig. 4 shows training signals of the dynamic 
system. The reference signals are shown with blue stars 
and the training results of using EFS are shown with red 
stars. The termination condition is the error variation 
less than 1e-005. Fig. 5 shows the testing data of the 
dynamic system, where the reference signals are shown 
with blue stars and EFS results are shown with red stars. 
Table 1 summarizes the total number of parameters 
used, the number of training epochs, the training RMSE, 
and the testing RMSE. The performance of EFS is 
compared to those using other identification systems, 
including a FNNS and a IT2FNNS. The EFS can 
quickly make the training error to approach the 
termination conditions in 184 epochs. Fig. 6 shows the 
training RMSE of EFS, FNNS, and IT2FNNS. From the 
simulation results, it is evident that the EFS has better 
convergence ability and much faster convergent speed 
in terms of epochs than that of other systems. 

 

Models FNN IT2FNN EFS 
Fuzzy rules 25 50 225 
Epoch 438 379 184 
Training RMSE 3.11e-002 3.0205e-002 1.72e-002
Testing RMSE 3.23e-002 3.4305e-002 2.61e-002

 
Table 1. Performance of EFS, FNN, and IT2FNN  
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Fig. 4: Results of the training 
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Fig. 6: RMSE histories of all identification methods 

5. Conclusions 

Instead of using traditional fuzzy system structure, a 
novel fuzzy system structure is proposed in the paper. 
The structure is combined neural network learning algo-
rithm with enhanced fuzzy systems (EFS). The EFS is 
composed of multiple component fuzzy systems and 
each component fuzzy system is based on one tradition-
al fuzzy set with one pair of symmetry fuzzy sets. It can 
also be found that the function approximation capability 
and learning efficiency of the EFS are much better than 
that of the traditional fuzzy systems when employed in 
enhanced fuzzy systems. In our simulation results, 
much faster convergent speed in terms of epochs and a 
good testing error can be obtained by using the pro-
posed structure. 
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