
N-contrapositivisation of fuzzy implication
functions

I. Aguiló, J. Suñer, J. Torrens

University of the Balearic Islands
Department of Mathematics and Computer Science

Crta. de Valldemosa, km. 7,5
07122 Palma de Mallorca. Spain

e-mails: {isabel.aguilo, jaume.sunyer, jts224}@uib.es

Abstract

The law of contraposition with respect to a nega-
tion (usually strong) is one of the most studied
properties in the theory of fuzzy implication func-
tions. We already know some methods for modify-
ing an implication with the aim that the new im-
plication satisfies this property, these methods are
called contrapositivisation. In this paper we present
two new methods of contrapositivisation with re-
spect to any strong negation and we study their
properties. Along this study we will see that these
new methods not only preserve the usual properties
preserved by the already known methods, but they
also have some additional property.

Keywords: Fuzzy implication, contraposition,
strong negation, contrapositivisation.

1. Introduction

Fuzzy implication functions are key operators in
fuzzy control and approximate reasoning, and also
in all the fields where these theories apply. For
this reason many authors have dealt with fuzzy
implications both from a theoretical and from an
applied point of view; thus fuzzy implications have
become a research field, as we can see in the review
paper [16] and in the fact that some books have
appeared on this topic (see [4, 3]).

Due to the great number of applications they
have, there exist many different models of fuzzy
implication functions, depending on the particular
problem they have to model. The most accepted
definition of a fuzzy implication function is very gen-
eral, and it only requires the monotonicities and the
condition that it coincides with the classical impli-
cation at 0 and 1. Thus many of the studies on
fuzzy implications deal with additional properties
that could be desirable in each particular case. Most
of these properties come from classical logic tautolo-
gies that become functional equations when they are
translated into fuzzy logic. The solutions of these
functional equations give different types of implica-
tions that satisfy the required algebraic properties.

In [18] it is indicated that the characterizations

through algebraic properties are essential for un-
derstanding the behaviour of the different models of
fuzzy implications. Thus, for example, the (S, N)-
implications (except when the negation N is not
continuous) and the R-implications are completely
characterized (see [2] and [9] respectively), but the
QL and D-operations are only characterized in
some particular cases (see [15]).

One of the most studied properties is the so-called
law of contraposition of an implication I with re-
spect to a negation N , expressed as

I(N(y), N(x)) = I(x, y) for all x, y ∈ [0, 1]. (1)

This property was already studied by Trillas-
Valverde in 1981 ([19]) and Fodor in 1995 ([10])
for the cases when the negation N is strong, and
it was subsequently studied by Jenei in 2000 ([12])
and Balasubramaniam in 2006 ([5]). The equation
(1) comes from the classical law of contraposition
and it plays an important role in applications
like approximate reasoning, deductive systems
and formal methods of proof. For more details
see Section 1.5 in [4], where more general cases
with not necessarily strong negations are dealt with.

However, in many cases the law of contrapo-
sition does not hold and thus different ways of
modifying an implication have appeared with the
aim of obtaining a new implication satisfying the
contraposition. These procedures are known as
methods of contrapositivisation and some of them
have appeared, defined with respect to strong
negations. For instance, we have the upper and
lower contrapositivisations, introduced in [6] and
studied in detail in [10]. Another example is the
medium contrapositivisation, introduced in [5] (see
also Section 7.1 of the book [4]).

It is worth to point up that the study of the
contrapositivisation of the residuated implications
made in [10] gave rise to the t-norm Nilpotent
minimum, the first known left-continuous (but
not continuous) t-norm, which produced the so
important and prolific study of the left-continuous
t-norms (see, for instance, [7], [12], [13] and the
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references therein).

In this paper we present a new method of con-
trapositivisation with respect to a strong negation
N that exhibits very good properties. In particu-
lar, our method preserves the usual properties (also
preserved by the already existing methods), like the
ordering property and the identity principle, but it
also preserves the left neutrality principle and other
additional properties.

2. Preliminaries

In this section we give some basic definitions and
results that will be used along the paper. More
details and examples on fuzzy implications can be
found in [4], and on negations in [14].

Definition 1 ([9]) A function N : [0, 1] → [0, 1] is
said to be a fuzzy negation if it is decreasing with
N(0) = 1 and N(1) = 0. A fuzzy negation N is said
to be

• strict when it is strictly decreasing and contin-
uous.
• strong when it is an involution, i.e.,

N(N(x)) = x for all x ∈ [0, 1].

Definition 2 ([9], [4]) A binary operator I : [0, 1]×
[0, 1] → [0, 1] is said to be an implication function,
or an implication, if it satisfies:

I1) I is decreasing in the first variable and in-
creasing in the second one, that is, for all
x, x1, x2, y, y1, y2 ∈ [0, 1],

if x1 ≤ x2, then I(x1, y) ≥ I(x2, y)

and

if y1 ≤ y2, then I(x, y1) ≤ I(x, y2)

I2) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

Note that, from the definition, it follows that
I(0, x) = 1 and I(x, 1) = 1 for all x ∈ [0, 1] whereas
the symmetrical values I(x, 0) and I(1, x) are not
derived from the definition.

Among many other properties usually required
for fuzzy implications we recall here some of the
most important ones.

• CP (N) Law of contraposition with respect to
a fuzzy negation N :

I(x, y) = I(N(y), N(x)) for all x, y ∈ [0, 1].

• (EP ) Exchange Principle:

I(x, I(y, z)) = I(y, I(x, z)) for all x, y, z ∈ [0, 1].

• (NP ) (Left) Neutrality Property:

I(1, y) = y for all y ∈ [0, 1].

• (OP ) Ordering Property:

I(x, y) = 1 ⇐⇒ x ≤ y for all x, y ∈ [0, 1].

• (SN) Strong Negation Principle:

I(x, 0) is a strong negation for all x ∈ [0, 1].

• (IP ) Identity Principle:

I(x, x) = 1 for all x ∈ [0, 1].

The two most usual types of implications are R-
implications derived from left-continuous t-norms
(and also from more general conjunctive aggre-
gation functions, like uninorms, copulas, quasi-
copulas, and so on, see for instance [4, 8, 17]),
and (S, N)-implications derived from fuzzy nega-
tions and t-conorms (and also from more general
disjunctive aggregation functions, see for instance
[1, 17]).

Definition 3 ([4]) Let I be an implication and N
a fuzzy negation. We define the N− reciprocal of I
as the implication IN

IN (x, y) = I(N(y), N(x)) , x, y ∈ [0, 1]

Definition 4 ([4]) Let I be a fuzzy implication.
The fuzzy negation NI defined by

NI(x) = I(x, 0) for all x ∈ [0, 1]

is called the natural negation of I.

We recall some contrapositivisation techniques pro-
posed in [4].

Definition 5 Let I be an implication and N a fuzzy
negation. The functions Iu

N , I l
N , Im

N : [0, 1] ×
[0, 1]→ [0, 1] are defined as:
- Upper contrapositivisation of I with respect to

N :

Iu
N (x, y) = max(I(x, y), IN (x, y)), x, y ∈ [0, 1].

- Lower contrapositivisation of I with respect to
N :

I l
N (x, y) = min(I(x, y), IN (x, y)), x, y ∈ [0, 1].

- Medium contrapositivisation of I with respect to
N :

Im
N (x, y) = min(I(x, y) ∨ N(x), I(N(y), N(x)) ∨ y)

for all x, y ∈ [0, 1], where ∨ indicates the maximum.

Proposition 1 Let I be an implication and N a
fuzzy negation. The functions Iu

N , I l
N and Im

N are
fuzzy implications. Moreover, if N is strong, then
all of them satisfy CP (N).

Proposition 2 Let I be an implication and N a
fuzzy negation. If I satisfies (OP ) and (IP ), then
so do Iu

N , I l
N and Im

N .
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3. N-lower-contrapositivisation with respect
to strong negations

In this section we want to present a new type of
contrapositivisation with respect to a strong nega-
tion N that allows to transform any implication (not
satisfying CP(N)) into another one that satisfies it.
We begin giving the general definition with respect
to any negation.

Definition 6 Given an implication I and a nega-
tion N , we define the N -lower-contrapositivisation
of I, denoted by I lc

N , as the binary operator on [0, 1]
given by

I lc
N (x, y) =

{
I(x, y) if y ≥ N(x)
I(N(y), N(x)) if y < N(x) (2)

Figure 1 shows the structure of the N-lower-
contrapositivisation of an implication I with respect
to any negation (for simplicity, the figure represents
a strong negation).

Figure 1: Structure of the N -lower-
contrapositivisation of an implication I.

The idea of this definition arose from previous
works of the authors. Given any strong negation
N , the implication

I(x, y) =

 1 if x ≤ y
1− x + y if x > y ≥ N(x)
1−N(y) + N(x) if x, N(x) > y

(3)
appears in [1] as the (S, N)-implication obtained
from N and the aggregation function G(x, y) =
1−max(0, N(x∧ y)− x∨ y), where ∧ indicates the
minimum and ∨ the maximum. Observe that the
above implication is in fact given by the Łukasiewicz
implication

IŁ(x, y) = min(1, 1− x + y), x, y ∈ [0, 1]

in the region where y ≥ N(x) and it is given by the
N -reciprocal of the Łukasiewicz implication in the
region where y < N(x).

Another example that appears in [1] is the (S, N)-
implication obtained from the strong negation N
and the aggregation function

G(x, y) = min
(

1,
x ∨ y

N(x ∧ y)

)
,

which is given by

I(x, y) =


1 if x ≤ y
y
x if x > y ≥ N(x)
N(x)
N(y) if x, N(x) > y.

(4)

Similarly as above, it is easy to see that this impli-
cation coincides with the Goguen implication

IGG(x, y) = min(1,
y

x
)

in the region where y ≥ N(x) and it is given by
the N -reciprocal of the Goguen implication in the
region where y > N(x).

Thus, generalizing this procedure to any impli-
cation function I we obtain the definition given
in equation (2), and then the implications de-
scribed above are two direct examples of N -lower-
contrapositivisations.

Example 1 i) Let us consider the Łukasiewicz im-
plication I = IŁ and a strong negation N . Then
I lc

N (x, y) is the implication considered in the equa-
tion (3).
ii) Let us consider now the Goguen’s implication

I = IGG and a strong negation N . Then I lc
N (x, y)

is the implication considered in the equation (4).

All the above examples are related to strong nega-
tions, but this condition is not necessary to obtain
implications through Definition 6. In what follows
we give some examples proving this fact and also
that not any negation can be used.

Example 2
1) Let I be an implication and N0 the smallest

negation:

N0(x) =
{

0 if x > 0
1 if x = 0

Then

I lc
N0

(x, y) =
{

I(x, y) if x > 0
1 if x = 0

Therefore I lc
N0

= I, and thus it is an implica-
tion.

2) Let I be an implication and N1 the greatest
negation:

N1(x) =
{

1 if x < 1
0 if x = 1

Then

I lc
N1

(x, y) =
{

1 if x < 1
I(1, y) if x = 1,

Therefore I lc
N1

is always an implication.
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Example 3 Let us consider the Reichenbach im-
plication, IRC(x, y) = 1− x + xy, and the following
negation

N(x) =

 1 if x = 0
a if 0 < x < 1
0 if x = 1

where a ∈ (0, 1).

Let x, y ∈ [0, 1] such that y < a < x. Then
(IRC)lc

N (x, y) = IRC(N(y), N(x)) = IRC(a, a) =
1 − a + a2, Whereas (IRC)lc

N (x, a) = IRC(x, a) =
1− x + xa < 1− a + a2.

Therefore, (IRC)lc
N is not an implication. The

previous negation N and the structure of the cor-
responding N -lower-contrapositivisation are shown
in Figure 2.

a

1− x + xy

1− a + a2

r

r
a

Figure 2: The graph of the negation N in Ex-
ample 3 (up) and the structure of the N -lower-
contrapositivisation of the Reichenbach implication
with respect to N (down).

Thus we see that not any negation can be used if
we want to obtain implications. Let us see that,
in the case of strong negations N , the N -lower-
contrapositivisation of any implication I is always
an implication.

Proposition 3 Let N be a strong negation and I
an implication. Then I lc

N is an implication.

Proof. Note that I lc
N clearly satisfies the bound-

ary conditions given by condition I2). Thus, to
prove that I lc

N is an implication, it is only neces-
sary to show the monotonicities of the horizontal

and vertical sections when crossing the graph of the
negation N .

- Let x ∈ (0, 1) and x′ < x. We want to prove
that I lc

N (x′, N(x)) ≥ I lc
N (x, N(x)). We have:

I lc
N (x′, N(x)) = I(N2(x), N(x′)) = I(x, N(x′))

and, on the other hand, I lc
N (x, N(x)) =

I(x, N(x)). Then, since x′ < x, N(x′) ≥ N(x),
and the result follows.

- Now, let us take x ∈ (0, 1) and con-
sider y′ < N(x). We want to prove that
I lc

N (x, y′) ≤ I lc
N (x, N(x)). But I lc

N (x, N(x)) =
I(x, N(x)) and, on the other hand, I lc

N (x, y′) =
I(N(y′), N(x)). Then, since y′ < N(x),
N(y′) ≥ N2(x) = x, and again the result fol-
lows.

Next we give a family of negations which are
not strong (not even strict) such that the N -lower-
contrapositivisation of any implication I is also an
implication.

Proposition 4 Given a ∈ (0, 1), let Na be the
negation given by

Na(x) =

 1 if x = 0
N ′

a(x) if 0 < x ≤ a
0 if a < x ≤ 1,

where N ′
a is any strong negation on the interval

(0, a). Then the Na-lower-contrapositivisation I lc
Na

of any implication I is an implication.

Observe that, although I lc
N is an implication, it

does not need to satisfy the contraposition property
with respect to N . In fact, this is the case for all
the contrapositivisations introduced in the previous
proposition. Next example considers the case when
N ′

a(x) = a− x.

Example 4 Let I be an implication and Na the fol-
lowing negation:

Na(x) =

 1 if x = 0
a− x if 0 < x ≤ a

0 if a < x ≤ 1.

Proposition 4 proves that I lc
Na

is an implication.
Nevertheless, in general it does not satisfy CP (N)
(it is sufficient to consider implications I such that
I(x, y) 6= 1 for x, y > a).

The structure of the Na-lower-
contrapositivisation of an implication I with
respect to the negation Na given in the previous
example can be seen in Figure 3.

Remark 1 Similar negations to the ones given in
the previous example were studied in [7] and they
were used to construct left continuous t-norms.
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I(x, y)

I(N(y), N(x))

Figure 3: The Na-lower-contrapositivisation of an
implication I.

Next proposition shows that I lc
N satisfies CP (N)

when we deal with strong negation.

Proposition 5 Let I be an implication and N a
strong negation. Then I lc

N satisfies CP (N).

Proof. To prove CP (N), let us consider different
cases:

a) If y = N(x) then N(y) = N2(x) = x, and so

Ic
N (x, y) = I(x, y) = I(x, N(x))

= I(N(y), N(x))
= Ic

N (N(y), N(x))

b) If y > N(x) then N(x) < N2(y) = y, and so

Ic
N (x, y) = I(x, y) = I(N(N(x)), N(N(y)))

= Ic
N (N(y), N(x)).

c) If y < N(x) then N(x) > N2(y) = y, and so

Ic
N (x, y) = I(N(y), N(x)) = Ic

N (N(y), N(x)).

In fact, only strong negations satisfy this property
as it is proved in the following theorem.

Theorem 1 Let N be a negation. The N -lower-
contrapositivisation of any implication I, I lc

N , is an
implication that satisfies CP (N) if and only if N is
strong.

Proof. If N is strong we have already proved
that I lc

N is an implication function satisfying CP (N)
for all implication I.
With respect to the converse, let us give a sketch

of the proof. If I lc
N is an implication function satis-

fying CP (N) for all implication I, then this is true
in particular for the following implication:

I(x, y) =

 y if x = 1
N(x) if y = 0

1 otherwise

By imposing this fact, one easily concludes that N
must be strong.

The rest of the section is devoted to the study of
the properties of the N -lower-contrapositivisation
when N is a strong negation. First of all, we have
that if an implication I already satisfies CP (N),
then I lc

N = I.

On the other hand, we can see that there exists
a connection between I lc

N and the upper contraposi-
tivisation Iu

N (see Preliminaries). Specifically, there
are cases in which both contrapositivisations coin-
cide, as the following example shows.

Example 5 If we consider the Gödel implication

IGD(x, y) =
{

1 if x ≤ y
y if x > y

and any strong negation N , then I lc
N = Iu

N . More-
over, this implication is given by

I lc
N (x, y) = Iu

N (x, y) =
{

1 if x ≤ y
max(N(x), y) if x > y

Remark 2 Observe that the N -lower-
contrapositivation (as well as the upper con-
trapositivation) of the Gödel implication with
respect to any strong negation N coincides with the
Fodor implication, that is, the residual implication
obtained from the minimum nilpotent t-norm.
Figure 4 shows the structure of this implication.

Figure 4: The N -lower-contrapositivisation of the
Gödel implication.

Next we see that the ordering property (OP ) and
the identity principle (IP ) are preserved by the N -
lower-contrapositivisation, as it is the case of the
upper, lower, and medium contrapositivisations.

Proposition 6 Let I be an implication and N a
strong negation.

1) If I satisfies the ordering property (OP ), then
I lc

N also satisfies it.
2) If I satisfies (IP ), then I lc

N also satisfies it.

Now we see that the behaviour of I lc
N is even bet-

ter since it also preserves other additional proper-
ties. Let us begin with the (NP ) property, which
is not preserved in general by the already known
contrapositivisations.
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Proposition 7 Let N be a strong negation and
I an implication satisfying (NP ). Then I lc

N also
satisfies (NP ).

We can give the following facts with respect to
the natural negation associated to an implication I.

Remark 3 Let N be a strong negation and I an
implication. Then the negation induced by the N -
lower-contrapositivisation of I is given by

NIlc
N

(x) = I(1, N(x)) for all x ∈ [0, 1].

Definition 7 (Definition 7.1.9 in [4]) Let N be
a strong negation and I an implication function.
Then I lc

N is said to be N -compatible when NIlc
N

= N .

Proposition 8 Let N be a strong negation and I
an implication function. Then I lc

N is N -compatible
if and only if I satisfies (NP ). Moreover, in this
case I lc

N also satisfies (SN).

It can be seen that, in general, I lc
N may not satisfy

(SN), even when I satisfies it and N is a strong
negation (see the example below). However, in view
of Proposition 8, if I satisfies (NP ) then I lc

N always
satisfies (SN) even if I does not satisfy it.

1

1

1− x

1

1
@
@
@
@
@
@
@
@
@
@
@@

1− x

y

Figure 5: Structure of the implication I (up) and
its N -lower-contrapositivisation (down) given in ex-
ample 6.

Example 6 Let I be the implication given by

I(x, y) =
{

1 if x = 0 or y = 1
1− x otherwise.

Its associated negation is the classical one Nc(x) =
1 − x and so I satisfies (SN). Now let us con-
sider I lc

N the N -lower-contrapositivisation of I with
respect to the negation Nc. A simple calculation
shows that

I lc
N (x, y) =


1 if x = 0 or y = 1
1− x if 1− x ≤ y < 1
y if y < 1− x < 1.

Clearly, the negation associated to I lc
N is the weakest

negation and consequently I lc
N does not satisfy (SN).

The structure of I and its N -lower-
contrapositivisation I lc

N in this example can be
viewed in Figure 5.

On the other hand, the N -lower-
contrapositivisation does not preserve the exchange
principle (EP ), as it is the case of the upper, lower,
and medium contrapositivisations. The following
example shows that the property (EP ) is not
generally preserved by I lc

N .

Example 7 Let us consider the Reichenbach impli-
cation, IRC(x, y) = 1− x + xy, which we know that
satisfies (EP ). Let N(x) =

√
1− x2. In this case,

the N -lower-contrapositivisation of I is given by
(IRC)lc

N (x, y) =
1− x + xy if y ≥

√
1− x2

1−
√

1− y2(1−
√

1− x2) if y <
√

1− x2

If we take x = 1/4, y = 1/2 and z =
3/4, a straightforward calculation proves that
(IRC)lc

N (1/4, (IRC)lc
N (1/2, 3/4)) = 0.9869, whereas

(IRC)lc
N (1/2, (IRC)lc

N (1/4, 3/4)) = 0.9895. Thus
(IRC)lc

N does not satisfy (EP ).

4. A small variant contrapositivisation

We have presented in previous sections the N -lower-
contrapositivisation of implication functions with
respect to a strong negation N (see Definition 6),
along with some of their properties. Note however
that this definition can be slightly modified obtain-
ing a new contrapositivisation technique. The idea
is simply to use the N -reciprocal in the region over
the negation rather than in the region below the
negation. Specifically, we can give the following def-
inition.

Definition 8 Given an implication I and a nega-
tion N , we define the N -upper-contrapositivisation
of I, denoted by Iuc

N , as the binary operator on [0, 1]
given by

Iuc
N (x, y) =

{
I(N(y), N(x)) if y > N(x)
I(x, y) if y ≤ N(x) (5)

Figure 6 shows the structure of the N -upper-
contrapositivisation of an implication I with
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respect to any negation (for simplicity, the figure
represents a strong negation).

Figure 6: Structure of the N -upper-
contrapositivisation of an implication I.

The major part of the results given in the sec-
tion above for the N -lower-contrapositivisation can
be also proved for the N -upper-contrapositivisation.
First of all, we have the following result.

Proposition 9 Let N be a strong negation and I
an implication. Then Iuc

N is always an implication
function that satisfies CP (N)

Again this is true only for strong negations.

Theorem 2 Let N be a negation. The N -upper-
contrapositivisation of any implication I, Iuc

N , is an
implication that satisfies CP (N) if and only if N is
strong.

The following example shows that in some cases
this new contrapositivisation method coincides with
the lower-contrapositivisation (see Definition 5 in
the Preliminaries).

Example 8 Let us consider the Gödel implication
I. Then, Iuc

N = I l
N for any strong negation N and

this implication is given by

Iuc
N (x, y) = I l

N (x, y) =
{

1 if x ≤ y
min(N(x), y) if x > y

Moreover, it can also be proved that this con-
trapositivisation technique also preserves (OP ) and
(IP ) but not (EP ).

However, the behaviour of Iuc
N is different from

the behaviour of I lc
N with respect to the properties

(NP ), (SN), and N -compatibility as we can see in
the following propositions.

Proposition 10 Let N be a strong negation and I
an implication. The following items hold.

1) The natural negation of Iuc
N coincides with NI .

That is, NIuc
N

= NI .
2) Iuc

N satisfies (SN) if and only if I satisfies it.
3) Iuc

N is N -compatible if and only if I is N -
compatible. Moreover, in this case Iuc

N satisfies
(SN).

Proposition 11 Let N be a strong negation and
I an implication. If I is N -compatible, then Iuc

N

satisfies (NP ).

Remark 4 Note that, depending on the strong
negation N we deal with, we can choose a contrapos-
itivisation or the other one, in order to modify the
given implication I as little as possible. Specifically,
if N is given by a convex strong negation near to the
smallest negation, the N -lower-contrapositivisation
could be used because the region where the initial I
is modified (that is, the region under the negation
N) is smaller (see Figure 1). Whereas if N is given
by a concave strong negation near to the greatest
negation, the N -upper-contrapositivisation would be
preferred by the same reason (see Figure 6).

5. Conclusions

One of the most usual and required properties of
a fuzzy implication function is the so-called law
of contraposition or contrapositive symmetry with
respect to a strong negation N , CP (N). Such a
property is important in many application fields
like approximate reasoning, deductive systems,
decision support systems, formal methods of proof,
and for this reason it has been extensively studied
in the literature. Unfortunately, there are many
implication functions that do not satisfy the law of
contraposition and this fact has led to study some
techniques of contrapositivisation, that is, some
methods of modifying a given implication function
I that does not satisfy CP (N) in order to obtain a
new implication satisfying it.

In this work we have introduced two
new contrapositivisation techniques (called
N -lower-contrapositivisation and N -upper-
contrapositivisation) and we have studied the
properties that such methods preserve. We have
seen that they retain all properties preserved
by the already known methods and also some
additional ones. An additional advantage of these
new methods lies in the fact that the region where
the implication I is modified does not depend
on the proper implication I, but only on the
considered negation N . Moreover, this region
consists of the set of points (x, y) that are under
the graph of the negation N (for the N -lower-
contrapositivisation) or over that graph (for the
N -upper-contrapositivisation).
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