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Abstract

To face the big data challenge, sampling can be used
as a preprocessing step for clustering. In this paper,
an hybrid algorithm is proposed. It is density-based
while managing distance concepts. The algorithm
behavior is investigated using synthetic and real-
world data sets. The first experiments proved it can
be accurate, according to the Rand Index, with both
k-means and hierarchical clustering algorithms.
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1. Introduction

Summarizing information is a key task in informa-
tion processing, either in data mining, knowledge in-
duction or pattern recognition. Clustering [1] is one
of the most popular techniques. It aims at group-
ing items in such a way that similar ones belong
to the same cluster and are different from the ones
which belong to other clusters. Many methods [2]
have been proposed to identify clusters according to
various criteria. Some of them [3] are based on an
input space partition (k-means, spectral clustering,
Clarans) or grid techniques (like Sting or Clique),
others are density-based (Dbscan, Denclue, Clique).
Some of these techniques benefit a tree implemen-
tation: Birch, Cure, Diana, Chamaleon, Kd-tree.
To cope with data complexity, algorithms are be-

coming increasingly sophisticated in order to be
able to manage data with clusters of various shapes
and densities. This leads to an increased compu-
tational cost which limits their practical use, espe-
cially when applications concern very large database
like records of scientific and commercial applica-
tions, telephone calls, etc. Clearly, the majority of
mature clustering techniques rather address small
or medium databases (several hundreds of patterns)
and fail to scale up well with large data sets, with
an excessive computational time. Therefore, in ad-
dition to the usual performance requirements, re-
sponse time is of major concern to most data clus-
tering algorithms nowadays. As an example, algo-
rithms with quadratic or exponential complexity,
such as hierarchical approaches, are strongly lim-
ited. Their computational cost makes them inef-
ficient with large data sets. Even algorithms like
k-means are still slow in practice for large datasets.

While some approaches aims at optimizing and
speeding up existing techniques [4, 5], sampling ap-

pears as an interesting alternative to manage large
data sets.

The simplest and most popular method to appear
was uniform random sampling, well known to statis-
ticians. The only parameter is the proportion of the
data to be kept. Even if some work has been done
to find the optimal size by determining appropriate
bounds [6], random sampling does not account for
cluster shape or density. The results are interesting
from a theoretical point of view [7], but they tend
to overestimate the sample size in non worst-case
situations.

In our case, sampling is a preprocessing step for
clustering and clustering is assessed according to
cluster homogeneity and group separability. This
calls for two basic notions: density and distance.
Clusters can be defined as dense input areas sep-
arated by low density transition zones. Sampling
algorithms are based upon these two notions, one
driving the process while the other is more or less
induced.

All density methods [8] aim at tracking the lo-
cal density under the assumption that clusters are
more likely present around the modes of the spa-
tial distribution. They can be grouped in two main
families: space partition [9, 10] and local density
estimation, neighborhood or kernel estimation [11].
The main idea of these methods is to add a bias
according to space density, giving a higher prob-
ability for patterns located in less dense regions
to be selected so as to ensure the representation
of small clusters. The results are highly depen-
dent upon the bias level and the density estimation
method. The local estimation approaches (kernel or
k-nearest-neighbors) require a high computational
cost. Without additional optimization (sampling,
bucketing algorithm...), which also increases their
complexity, they are not scalable.

Distance concepts are widely used in clustering
and sampling algorithms as distance is used to
measure similarity and proximity between patterns.
The most popular algorithm representative of this
family remains the k-means, and its robust version
called k-medoids. While the k-means is an iterative
algorithm, whose convergence is guaranteed, some
single data-scan distance based algorithms have also
been proposed, such as leader family [4, 12] clus-
tering. The pioneering versions of distance based
methods are simple and fast, but they also are lim-
ited in the variety of shapes and densities they are
able to manage. When improved, for instance by
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taking density into account, they become more rel-
evant but their overall performance depends on the
way both concepts are associated and on the in-
crease of the computational cost. The mountain
method proposed by Yager and its modified versions
[13] are good representatives of hybrid methodolo-
gies.
Strategies usually based on stratification pro-

cesses have also been developed to improve and
speed up the sampling process [14]. Reservoir algo-
rithms [15] can be seen as a special case of stratifica-
tion approaches. They have been proposed to deal
with dynamic data sets, like the ones to be found
in web processing applications. If interesting, these
method need an accurate setting to become really
relevant.

This short review shows that sampling for clus-
tering techniques have been well investigated. Both
concepts, density and distance, as well as the meth-
ods have reached a good level of maturity. Ap-
proaches that benefit from a kd-tree implementa-
tion [16, 17] seem to represent the best alternative,
among the known methods, in terms of accuracy
and tractability. However, they are highly sensitive
to the parameter setting. The design of a method
that would be accurate, scalable and self-adaptive,
allowing to process various kinds of large data sets
with a standard setting, remains an open challenge.

The goal of this paper is to introduce a new al-
gorithm that fulfills these requirements. Based on
space density, it is also able to manage distance con-
cepts. The paper is organized as follows. Section
2 introduces the hybrid algorithm. The proposal
is evaluated using synthetic and real world data in
Section 3. Finally Section 4 summarizes the main
conclusions and opened perspectives.

2. The proposed sampling algorithm

The objective of the algorithm is to select items
from the whole set, T , to build the sample set, S.
Each item in S is called a representative, each pat-
tern in T is attached to its closest representative in
S.
The whole algorithm, Algorithm 1, is made up of

two steps. The first one, is based on space density
while taking into account distance notions. The sec-
ond one, can be seen as a post processing step which
aims at not selecting outliers as representatives.

The unique input parameter, except the data to
be sampled, is called granularity, and noted gr.
Data independent, it is combined with the whole set
cardinality to define a threshold,Wt, on the number
of patterns attached to a given representative (line
5). The granularity impacts the S size, the lower
gr the higher the number of representatives. How-
ever, the relation between both is not deterministic,
like in Sample Random Sampling. The number of
patterns attached to a representative also depends
on a volume estimation as explained below.

Algorithm 1 The density-based sampling algo-
rithm
1: Input: T = {xi}, i = 1 . . . , n, gr

2: Output: S = {yj}, Tyj , j = 1, . . . , s
3: Select an initial pattern xinit ∈ T
4: S = {y1 = xinit}, s = 1
5: ADD=TRUE, Wt = n gr,
6: while ADD==TRUE do
7: for all xl ∈ T \ S do
8: Find dnear(xl) = min

yk∈S
d(xl, yk)

9: Tyk = Tyk ∪{xl} {Set of patterns represented by
yk}

10: end for
11: for all yk ∈ S do
12: Find dmax(yk) = max

xm∈T\S
d(xm, yk)

13: Store dmax(yk), xmax(yk), |Tyk |
{where dmax(yk) = d(xmax(yk), yk)},

14: end for
15: ADD=FALSE
16: Sort y(1), . . . , y(s) with |Ty(1) | ≥ . . . ≥ |Ty(s) |
17: for all yk in S do
18: αk = 1 + |Tyk

|
Wt

19: if (dmax(yk) ≥ αk dmax(yk)
yk∈S

and |Tyk | ≥Wt) then
20: x∗ = xmax(yk)
21: ADD=TRUE, break
22: end if
23: end for
24: if ADD==TRUE then
25: S = S ∪ {x∗}, s = s+ 1
26: end if
27: end while
28: for all yi in S do
29: if |Tyi | < β Wt then
30: S = S − {yi}, s = s− 1
31: end if
32: if dmax(yi) ≥ γ dmax(yi)

yi∈S

then

33: yi = xl | min
xl∈Tyi

d(xl, B)

34: end if
35: Tyi = {yi}
36: end for
37: for all xl ∈ T \ S do
38: Find dnear(xl) = min

yk∈S
d(xl, yk)

39: Tyk = Tyk ∪ {xl}
40: end for
41: return S, Tyk∀k ∈ S

The first sample is randomly chosen (line 3).
Then the algorithm iterates to select the represen-
tatives (lines 6-27). In a preparation phase, each
not selected pattern, x ∈ T \ S1, is attached to
the closest selected one in S (lines 7-10) and, for
each set Tyk

, the algorithm searches for the fur-
thest attached pattern, xmax(yk), located at dis-
tance dmax(yk) = d(xmax(yk), yk) (lines 11-14).

Then a new representative is selected (lines 15-
23). The selected items are sorted according to the
cardinality of the set of patterns they are the repre-
sentative (line 16). Then these sets Tyk

are analyzed
in decreasing order of weight. Each of them is split
when two conditions are met (lines 19-20). The first
one deals with the number of attached patterns: it
has to be higher than the threshold,Wt = n gr. The

1’\’ stands for the set difference operation.
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other one is related to the induced hyper volume:
the furthest attached pattern must be located at a
distance higher than average. The corresponding in-
duced volume depends on the cardinality of the set,
taken into account with the αk coefficient. This co-
efficient is guaranteed to be higher than one. Both
notions, cardinality and induced volume, define the
density. The dmax condition prevents an unsuitable
over representation of dense areas. The new repre-
sentative is chosen as the furthest attached pattern,
xmax(yk), for space covering purposes.

When all the s representatives are selected, the
post processing step (lines 28-40) discards outliers
as representatives. As the new selected item is cho-
sen as the furthest from the ones which are already
selected, the S set is likely to include some outliers.
Two cases may occur. In the first one (lines 29-31),
when the representative is isolated, the number of
attached patterns is very low, |Tyi | < β Wt, with
β < 1, e.g β = 0.1. The choice is then to remove
this representative. In the other case, the outlier
detection is based upon the induced volume: the
corresponding dmax is higher than average (line 32),
dmax(yi) ≥ γdmax(yi)

yi∈S

, with γ > 1, e.g γ = 1.5. In

this case, the new representative is chosen as the
closest to the barycenter, B, of the set (line 33).
This way of doing is similar to the usual practice:
the representative is set at the center of the dense
areas, like in kernel and neighboring approaches. By
contrast, the proposal comes to select the represen-
tative at the border of the dense area. Once at least
a representative has been changed, an update of the
attached patterns is needed (lines 37-40), and to do
this the sets of attached patterns must be previously
reset (line 35).
Figure 1 aims at illustrating the impact of the

constraint on the induced volume (first part of line
19). The data (blue) are well structured in four
clusters of heterogeneous densities. The six first se-
lected representatives are plotted in red, while the
following ones appear in black. The small groups,
in the bottom part of the figure, are denser than
the others. The results for these two clusters are
displayed in a zoom version in Figure 2, with and
without this constraint.

Without the mentioned constraint, the new rep-
resentatives are located in the denser areas until the
number of attached patterns become smaller than
theWt threshold. When the constraint is active the
number of representatives in the dense area is lim-
ited by the induced volume. Density and distance
are both useful to avoid an over representation in
dense areas.
Many distance computations in Algorithm 1 can

be avoided thanks to the algorithm structure itself
as only the neighborhood of the new representa-
tive is impacted at a given iteration. It means that
the number of distances to be calculated drops with
the number of iterations, as the induced volume de-
creases. This number cannot be rigorously defined

Figure 1: Impact of the induced volume constraint

as it depends on the data. Under some reasonable
assumptions, it can be estimated that about 95%
of distance calculations can be saved by judiciously
using the triangle inequality.

Figure 2: Zoom of the two densest clusters

3. Results and Discussion

The main objective of the sampling is to select a
part that behaves like the whole. To assess the
sample representativeness, the partitions built from
the sample sets are compared to the ones designed
from the whole sets using the same clustering al-
gorithm. The Rand Index, RI, is used for parti-
tion comparison. Two representative clustering al-
gorithms are tested, the popular k-means and one
hierarchical algorithm. The resulting sample size as
well as the computational cost are carefully studied
as they have a strong impact on the practical use
of the algorithm. In this paper we use a time ra-
tio to characterize the CPU cost. It is computed as
the sampling time added to the clustering on sam-
ple time and divided by the time required to cluster
the whole data set.

In order to assess the algorithm, 20 databases are
selected, 12 synthetic and 8 real world data sets.
The synthetic ones are all in two dimensions and of
various sizes: {2200, 4000, 2200, 2000, 4000, 4500,
3500, 3500, 3000, 7500, 2500, 9500}. They are plot-
ted in Figure 3. The real world data are from the
UCI public repository. They are of various sizes and
space dimensions, with unknown data distribution.
Their main characteristics are summarized in Table
1. All the variables are centered and normalized.
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Figure 3: The twelve synthetic data sets

Table 1: The eight real world data sets
D Size Dim Name
1 434874 4 3D Road Network
2 45781 4 Eb.arff
3 5404 5 Phoneme
4 1025010 11 Poker Hand
5 58000 9 Shuttle
6 245057 4 Skin Segmentation
7 19020 10 Telescope
8 45730 10 CASP

Sample size. Even if the algorithm includes some
parameters, some of them can be considered as in-
ternal in the sense that the result, i.e. the sample
set, is not really sensitive to their setting, when this
parameter is chosen in a range defined as ±30% of
their nominal value.The algorithm is thus driven
by a unique, and meaningful, parameter called
granularity.
Figures 4 and 5 shows the reduction ratio of the

size of the sample sets for each of the synthetic and
real world data sets.

As expected, the sample set size is higher when
the granularity is lower. This evolution is mono-
tonic but not proportional. This is explained by
the restriction on the volume induced by the pat-
terns attached to a representative (line 19 of the al-
gorithm). When a dense area is covered, a lower
granularity won’t add new representatives. For
equal density data, the number of representatives
would be the inverse of the granularity. Thanks
to the density management, the sample set size is
always smaller with structured data: the maximum
ratio on Figure 4 is 8% for synthetic data set number
1, which comes to 2200×0.08 = 176 representatives.

Quality of representation. To assess the represen-
tativeness of the sample set, the same clustering al-
gorithm, either k-means or the hierarchical one, is
run with the whole set and the sample set. Then the
resulting partitions are compared using the Rand
Index. Dealing with the sample set, each non se-
lected pattern is considered to belonging to the clus-
ter of its representative.
Let’s consider the k-means algorithm first. As the

algorithm is sensitive to the initialization, a given
number of trials, 10 in this paper, are run for a

Figure 4: Size reduction ratio for the synthetic data
sets

Figure 5: Size reduction ratio for the real world data
sets

given configuration. The number of clusters being
unknown, it has been set to each of the possible
values in the range 2 to 20.

For each data set, synthetic and real world, the
resulting RI is averaged over all the experiments,
meaning all the trials for all the configurations.

The results are shown in Figures 6 and 7. The
average RI is higher than 0.85 for all the data sets
except for the Poker Hand data. It is worth noting
that a perfect match is not required to consider the
results as good. Indeed, RI = 1 would mean that
all the items, including those located at the border
of clusters, whose number varies from 2 to 20, are
always in the same partition.

It is expected that the bigger the sample set, the
higher the RI, at least until the RI becomes high
enough. This can be observed in the plots of Fig 6
and 7. There is one exception, for synthetic data set
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Figure 6: The RI with the k-means algorithm for
the synthetic data sets

Figure 7: The RI with the k-means algorithm for
the real world data sets

number 11 and granularity of 0.05 and 0.01. This
situation can be explained by the stochastic part
of both the test protocol and the algorithm initial-
ization. The data are well structured in two large
clusters with different densities, and a very dense
tiny one. In this case, with a fixed small number
of clusters, different from the optimum, a random
behavior can be observed as there are different so-
lutions with similar costs.
Comparison with uniform random sampling

(URS) is interesting to assess the relevance of the
algorithm. Theoretical bounds like the ones pro-
posed in [6] guarantee the URS representativeness in
the worst case. As the data are usually structured,
this leads to an oversized sample. The table 2 re-
ports the results of some comparisons with URS size
smaller than the theoretical bounds. The granular-
ity parameter has been set to reach a similar Rand

Table 2: Comparison with uniform random sam-
pling (URS) for the real world datasets

S(alg) RI S(URS) RI

1 702 0.96 2014 0.925
2 471 0.963 1996 0.939
3 271 0.957 270 0.955
4 750 0.85 2000 0.849
5 661 0.9 2006 0.94
6 662 0.98 2850 0.96
7 732 0.94 951 0.91
8 851 0.973 1998 0.96

Index than the one yielded by URS. The granular-
ity values are not reported in the table. The results
show that, for similar RI, the sample size is usually
smaller when resulting from the proposal than the
one given by URS. However, in some cases like Data
sets #3 and #7, the results are comparable mean-
ing that the underlying structure is well captured
by URS.

In the case of the hierarchical approach, various
dendrograms can be built according to the linkage
function, e.g. Ward criterion or single link. To
get a fair comparison the number of groups is cho-
sen in S in the range [2, 20] and the cut in T is
done to get a similar explained inertia. When the
Ward criterion is used the number of groups in S
and in T are quite similar while using the single
link aggregation criterion, the generated partitions
are generally of different sizes. The average and
standard deviation of the Rand Index were com-
puted for all the databases, reduced to 3000 pat-
terns for tractability purposes, and different level
of granularity. For granularity = 0.04, with the
Ward criterion, the RI is (µ, σ) = (0.86, 0.029) for
the synthetic databases and (µ, σ) = (0.87, 0.036)
for the real ones. With the single link one, it is
(µ, σ) = (0.87, 0.05) for the synthetic databases and
(µ, σ) = (0.88, 0.08) for the real ones. In this case,
the standard deviation is higher than the one corre-
sponding to theWard criterion. This can be due to
the difference between the explained inertia in both
sets: even if they are close one to the other, they
are more likely to be different with the single link
criterion.

Computational cost. The sampling algorithm must
be scalable to be used in real world problems. This
work also includes time optimization which cannot
be detailed in the present paper. The index used to
characterize the algorithm efficiency is computed as
a ratio. The numerator is the sum of the sampling
time and the time needed to cluster the sample set,
while the denominator is the time for clustering the
whole data.

The results for the k-means algorithm are shown
in Figures 8 and 9. The time ratio drops below 10%
when the granularity is higher than 0.05. With the
hierarchical algorithm the same ratio is significantly
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Figure 8: The time ratio (%) with the k-means al-
gorithm for the synthetic data sets

smaller.

Figure 9: The time ratio (%) with the k-means al-
gorithm for the real world data sets

The average time ratios (in percent) obtained
with granularity = 0.01 and for all the databases
reduced to 3000 patterns are reported in Table 3.
All of them fall between 0.02% and 0.048%.

Sampling as the first steps of clustering. The for-
mer experiments show that the sample behaves like
the whole according to the Rand Index, meaning
that the same clustering algorithm run with the two
sets yields similar partitions. This conclusion sug-
gests that the sampling can be considered as the
probability density function of the original data set.
To validate this hypothesis, the result of the sam-
pling is now seen as a partition of s = |S| groups,
and this partition is compared to the one of the
same size given by the clustering algorithm run on

Table 3: Time ratio with the hierarchical algorithm
S Time r. (%) D Time r. (%)
1 0.026 1 0.031
2 0.021 2 0.023
3 0.029 3 0.043
4 0.021 4 0.040
5 0.020 5 0.026
6 0.022 6 0.028
7 0.019 7 0.045
8 0.020 8 0.011
9 0.024
10 0.048
11 0.021
12 0.031

Figure 10: Rand Index for database 12

the whole set of data, T . The k-means and the
hierarchical algorithm with the Ward criterion are
used. The experiments were conducted with all the
data sets, with five different granularities.

The Rand Index, for decreasing values of
granularity, are plotted in Figure 10 for synthetic
data set 12. The complementary data of this exper-
iment are given in Table 4 for all the databases.

The first row is the index used as the abscissa
in Fig. 10, the corresponding granularity is in the
second row. Next row reports the ratio of the sam-
ple size to the whole set in percent. The two last
rows give the time ratio in percent for both algo-
rithms, meaning the sampling time divided by the
clustering algorithm time needed to build the same
size partition.

As expected, the evolution for all these values is
monotonic: the sample size and the time ratio in-
crease with decreasing values of granularity. The
time ratio is, this was also expected, really low for
the hierarchical clustering, but it is also significantly
low for the k-means algorithm.

The Rand Index curves are also monotonic, the

Table 4: Averaged results for all the data sets
Index Fig. 10 1 2 3 4 5
Granularity 0.1 0.08 0.06 0.04 0.01
100 |S|/|T | 0.80 2.27 2.95 7.68 9.98
TimeR. KM (%) 1.94 2.44 2.63 3.45 10.3
TimeR. Hier. (%) 0.001 0.002 0.005 0.006 0.01
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smaller the granularity, the higher the RI. A quite
good match is achieved as well as the granularity is
below 6 % for both algorithms.

4. Conclusion

A new sampling for clustering algorithm has been
proposed in this paper. It is an hybrid algorithm
that manages both density and distance concepts.
Even if the basics of these concepts are known, their
specific use produces a really new algorithm.
The first experiments show that the proposal has

some nice properties.
It is parsimonious: the sample size is smaller than

the theoretical bound suggested in [6].
It is accurate, according to the Rand Index, for

the two types of clustering algorithms, k-means or
hierarchical: the partitions resulting from the clus-
tering on the sample are similar to the ones obtained
by the same algorithm from the whole set of data.
If the sampling algorithm can be used to speed up
the clustering, this is because the sampling can be
seen as the result of the first steps of the clustering:
when the result of the sampling, a |S|-size partition,
is compared to a same size partition resulting from
the first steps of the clustering, the Rand Index is
very high as soon as the granularity is low enough.
It is fast. Thanks to an internal optimization,

the running time is close to the one of the uniform
sampling. This scalability property allows its use
with very large data sets.

It is driven by a unique, and meaningful, param-
eter called granularity. The lower granularity, the
better the representativeness of the sample until all
the clusters are represented in the sample set.

Future work will be dedicated to improve the hy-
brid algorithm to become self-tuning, capable of
finding by itself the appropriate granularity to reach
a given level of accuracy.
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